SEARCH

SEARCH BY CITATION

References

  • Agee C. B. and Draper D. S. 2004. Experimental constraints on the origin of Martian meteorites and the composition of the Martian mantle. Earth and Planetary Science Letters 224:415429.
  • Albarede F. 1992. How deep do common basaltic magmas form and differentiate? Journal of Geophysical Research 97:1099711009.
  • Andersen D. J., Lindsley D. H., and Davidson P. M. 1993. QUIlF: A Pascal program to assess equilibria among Fe-Mg-Mn-Ti oxides, pyroxenes, olivine, and quartz. Computers and Geosciences 19:13331350.
  • Asimow P. D. and Longhi J. 2004. The significance of multiple saturation points in the context of polybaric near-fractional melting. Journal of Petrology 45:23492367.
  • Barrat J. A., Gillet P., Sautter V., Jambon A., Javoy M., Goepel C., Lesourd M., Keller F., and Petit E. 2002a. Petrology and chemistry of the basaltic shergottite Northwest Africa 480. Meteoritics & Planetary Science 37:487499.
  • Barrat J. A., Jambon A., Bohn M., Gillet P., Sautter V., Goepel C., Lesourd M., and Keller F. 2002b. Petrology and chemistry of the picritic shergottite Northwest Africa 1068 (NWA 1068). Geochimica et Cosmochimica Acta 66:35053518.
  • Boesenberg J. S., Ebel D. S., and Hewins R. H. 2004. An experimental study of phosphoran olivine and its significance in main group pallasites (abstract #1366). 35th Lunar and Planetary Science Conference. CD-ROM.
  • Borg L. E. and Draper D. S. 2003. A petrogenetic model for the origin and compositional variation of the Martian basaltic meteorites. Meteoritics & Planetary Science 38:17131731.
  • Boyce J. W., Liu Y., Rossman G. R., Guan Y., Eiler J. M., Stolper E. M., and Taylor L. A. 2010. Lunar apatite with terrestrial volatile abundances. Nature 466:466469.
  • Burger P. V., Shearer C. K., Papike J. J., and McCubbin F. M. 2012. Crystal chemistry of merrillite in Martian basalts and its significance to interpreting basalt petrogenesis (abstract #1178). 43rd Lunar and Planetary Science Conference. CD-ROM.
  • Burnham C. W. 1994. Development of the Burnham model for prediction of H2O solubility in magmas. In Volatiles in magmas, edited by Carroll M. R. and Holloway J. R. Reviews in Mineralogy, vol. 30. Washington, D.C.: Mineralogical Society of America. pp. 123129.
  • Buseck P. R. and Clark J. 1984. Zaisho—a pallasite containing pyroxene and phosphoran olivine. Mineralogical Magazine 48:229235.
  • Clark A. H., Pearce T. H., Roeder P. L., and Wolfson I. 1986. Oscillatory zoning and other microstructures in magmatic olivine and augite; Nomarski interference contrast observations on etched polished surfaces. American Mineralogist 71:734741.
  • Delano J. W. 1979. Apollo 15 green glass—Chemistry and possible origin. Proceedings, 10th Lunar and Planetary Science Conference, pp. 275300.
  • Delano J. W. 1980. Chemistry and liquidus phase relations of Apollo 15 red glass: Implications for the deep lunar interior. Proceedings, 11th Lunar and Planetary Science Conference. pp. 251288.
  • Draper D. S. and Agee C. B. 2008. Fundamental importance of returned samples to understanding the Martian interior. Ground truth from Mars 2008. http://www.lpi.usra.edu/captem/msr2008/presentations/Draper.pdf
  • Draper D. S., duFrane S. A., Shearer J. C. K., Dwarzski R. E., and Agee C. B. 2006. High-pressure phase equilibria and element partitioning experiments on Apollo 15 green C picritic glass: Implications for the role of garnet in the deep lunar interior. Geochimica et Cosmochimica Acta 70:24002416.
  • Dreibus G. and Waenke H. 1982. Parent body of the SNC meteorites: Chemistry, size and formation. Meteoritics 17:207208.
  • Dreibus G. and Waenke H. 1985. Mars, a volatile-rich planet. Meteoritics 20:367381.
  • Elkins-Tanton L. T., Chatterjee N., and Grove T. L. 2003. Experimental and petrological constraints on lunar differentiation from the Apollo 15 green picritic glasses. Meteoritics & Planetary Science 38:515527.
  • Filiberto J. and Dasgupta R. 2011. Fe2+-Mg partitioning between olivine and basaltic melts: Applications to genesis of olivine-phyric shergottites and conditions of melting in the Martian interior. Earth and Planetary Science Letters 304:527537.
  • Filiberto J. and Treiman A. H. 2009. Martian magmas contained abundant chlorine, but little water. Geology 37:10871090.
  • Filiberto J., Treiman A. H., and Le L. 2008. Crystallization experiments on a Gusev Adirondack basalt composition. Meteoritics & Planetary Science 43:11371146.
  • Filiberto J., Jackson C., Le L., and Treiman A. H. 2009. Partitioning of Ni between olivine and an iron-rich basalt: Experiments, partition models, and planetary implications. American Mineralogist 94:256261.
  • Filiberto J., Dasgupta R., Kiefer W. S., and Treiman A. H. 2010a. High pressure, near-liquidus phase equilibria of the Home Plate basalt Fastball and melting in the Martian mantle. Geophysical Research Letters 37:L13201, doi: 13210.11029⁄12010GL043999.
  • Filiberto J., Musselwhite D. S., Gross J., Burgess K., Le L., and Treiman A. H. 2010b. Experimental petrology, crystallization history, and parental magma characteristics of olivine-phyric shergottite NWA 1068: Implications for the petrogenesis of ‘‘enriched’’ olivine-phyric shergottites. Meteoritics & Planetary Science 45:12581270.
  • Filiberto J., Abernethy F., Butler I. B., Cartwright J., Chin E. J., Day J. M. D., Goodrich C., Grady M., Gross J., Franchi I. A., Herd C. D. K., Kelley S. P., Ott U., Penniston-Dorland S., Schwenzer S. P., and Treiman A. H. 2011. Maximizing the science return from 3.3 g of Martian meteorite: A consortium study of olivine-phyric shergottite Northwest Africa 6234. EOS. Meteoritics & Planetary Science 46(Suppl.):A108.
  • Filiberto J., Chin E. J., Day J. M. D., Franchi I. A., Greenwood R. C., Gross J., Penniston-Dorland S., Schwenzer S. P., and Treiman A. H. 2012. Geochemistry of intermediate olivine-phyric shergottite Northwest Africa 6234, with similarities to basaltic shergottite Northwest Africa 480 and olivine-phyric shergottite Northwest Africa 2990. Meteoritics & Planetary Science 47:12561273, doi: 10.1111/j.1945-5100.2012.01382.x.
  • Gasparik T. 2000. An internally consistent thermodynamic model for the system CaO-MgO-Al2O3-SiO2 derived primarily from phase equilibrium data. The Journal of Geology 108:103119.
  • Ghiorso M. S. and Evans B. W. 2008. Thermodynamics of rhombohedral oxide solid solutions and revisions of the Fe-Ti two-oxide geothermometer and oxygen-barometer. American Journal of Science 308:9571039.
  • Goldoff B., Webster J. W., and Harlov D. E. 2012. Characterization of fluor-chlorapatites by electron probe microanalysis with a focus on time—dependent intensity variation of halogens. American Mineralogist 97:11031115.
  • Goodrich C. A. 2002. Olivine-phyric Martian basalts: A new type of shergottite. Meteoritics & Planetary Science 37:3134.
  • Goodrich C. A. 2003. Petrogenesis of olivine-phyric shergottites Sayh al Uhaymir 005 and Elephant Moraine A79001 lithology A. Geochimica et Cosmochimica Acta 67:37353772.
  • Goodrich C. A., Herd C. D. K., and Taylor L. A. 2003. Spinels and oxygen fugacity in olivine-phyric and lherzolitic shergottites. Meteoritics and Planetary Science 38:17731792.
  • Greenwood J. P., Blake R. E., and Coath C. D. 2003. Ion microprobe measurements of O(18)/O(16) ratios of phosphate minerals in Martian meteorites ALH 84001 and Los Angeles. Geochimica et Cosmochimica Acta 67:22892298.
  • Gross J., Treiman A. H., Filiberto J., and Herd C. D. K. 2011. Primitive olivine-phyric shergottite NWA 5789: Petrography, mineral chemistry, and cooling history imply a magma similar to Yamato-980459. Meteoritics & Planetary Science 46:116133.
  • Gross J., Filiberto J., Treiman A., Herd C. D. K., Melwani Daswani M., and Schwenzer S. P. 2012. Petrography, mineral chemistry, and crystallization history of olivine-phyric shergottite NWA 6234: A new intermediate melt composition (abstract #2693). 43rd Lunar and Planetary Science Conference. CD-ROM.
  • Grove T. L. and Vaniman D. T. 1978. Experimental petrology of very low Ti (VLT) basalts. In Mare Crisium: The view from Luna 24, edited by Merrill R. B. and Papike J. J. New York: Pergamon Press. pp. 445471.
  • Herd C. D. K. 2003. The oxygen fugacity of olivine-phyric Martian basalts and the components within the mantle and crust of Mars. Meteoritics & Planetary Science 38:17931805.
  • Herd C. D. K. 2006. Insights into the redox history of the NWA 1068/1110 Martian basalt from mineral equilibria and vanadium oxybarometry. American Mineralogist 91:16161627.
  • Herd C. D. K. 2008. Basalts as probes of planetary interior redox state. Reviews in Mineralogy and Geochemistry 68:527553.
  • Herd C. D. K., Borg L. E., Jones J. H., and Papike J. J. 2002. Oxygen fugacity and geochemical variations in the Martian basalts: Implications for Martian basalt petrogenesis and the oxidation state of the upper mantle of Mars. Geochimica et Cosmochimica Acta 66:20252036.
  • Irving A., Herd C., Gellissen M., Kuehner S., and Bunch T. 2011. Paired fine grained, permafic olivine-phyric shergottites northwest Africa 2990⁄5960⁄6234⁄6710: Trace element evidence for a new type of Martian mantle source or complex lithospheric assimilation processes (abstract #5232). Meteoritics 46:A108.
  • Jolliff B. L., Haskin L. A., Colson R. O., and Wadhwa M. 1993. Partitioning in REE-saturating minerals: Theory, experiment, and modeling of whitlockite, apatite, and evolution of lunar residual magmas. Geochimica et Cosmochimica Acta 57:40694094.
  • Jones J. H. 1986. A discussion of isotopic systematics and mineral zoning in the shergottites: Evidence for a 180 m.y. igneous crystallization age. Geochimica et Cosmochimica Acta 50:969977.
  • Langmuir C., Klein E., and Plank T. 1992. Petrological systematics of mid-ocean ridge basalts: Constraints on melt generation beneath ocean ridges. Geophysical Monograph-American Geophysical Union 71:183183.
  • Lee C.-T. A., Luffi P., Plank T., Dalton H., and Leeman W. P. 2009. Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas. Earth and Planetary Science Letters 279:2033.
  • Leshin L. A. 2000. Insights into Martian water reservoirs from analyses of Martian meteorite QUE 94201. Geophysical Research Letters 27:20172020.
  • Leshin L. A. and Vicenzi E. 2006. Aqueous processes recorded by Martian meteorites: Analyzing Martian water on Earth. Elements 2:157162.
  • Leshin L. A., Epstein S., and Stolper E. M. 1996. Hydrogen isotope geochemistry of SNC meteorites. Geochimica et Cosmochimica Acta 60:26352650.
  • Longhi J. and Pan V. 1989. The parent magmas of the SNC meteorites. Proceedings, 19th Lunar and Planetary Science Conference. pp. 451464.
  • Maloy A. K. and Treiman A. H. 2007. Evaluation of image classification routines for determining modal mineralogy of rocks from X-ray maps. American Mineralogist 92:17811788.
  • Mathez E. A. and Webster J. D. 2005. Partitioning behavior of chlorine and fluorine in the system apatite-silicate melt-fluid. Geochimica et Cosmochimica Acta 69:12751286.
  • McCoy T. J., Corrigan C. M., and Herd C. D. K. 2011. Combining meteorites and missions to explore Mars. Proceedings of the National Academy of Sciences 108:1915919164.
  • McCubbin F. M., Smirnov A., Nekvasil H., Wang J., Hauri E., and Lindsley D. H. 2010. Hydrous magmatism on Mars: A source of water for the surface and subsurface during the Amazonian. Earth and Planetary Science Letters 292:132138.
  • McCubbin F. M., Jolliff B. L., Nekvasil H., Carpender P. K., Zeigler R. A., Steele A., and Lindsley D. H. 2011. Fluorine and chlorine abundances in lunar apatite: Implications for heterogeneous distributions of magmatic volatiles in the lunar interior. Geochimica et Cosmochimica Act 75:50735093.
  • McCubbin F. M., Hauri E. H., Elardo S. M., Vander Kaaden K. E., Wang J., and Shearer C. K., Jr. 2012. Hydrous melting of the Martian mantle produced both depleted and enriched shergottites. Geology 40:683686.
  • McMillan P. F. 1994. Water solubility and speciation models. In Volatiles in magmas, edited by Carroll M. R. and Holloway J. R. Reviews in Mineralogy, vol. 30. Washington, D.C.: Mineralogical Society of America. pp. 131156.
  • McSween H. Y. 1994. What we have learned about Mars from SNC meteorites. Meteoritics & Planetary Science 29:757779.
  • McSween H. Y. 2002. The rocks of Mars, from far and near. Meteoritics & Planetary Science 37:725.
  • McSween H. Y. and Jarosewich E. 1983. Petrogenesis of the Elephant Moraine A79001 meteorite—Multiple magma pulses on the Shergottite parent body. Geochimica et Cosmochimica Acta 47:15011513.
  • Milman-Barris M. S., Beckett J. R., Baker M. B., Hofmann A. E., Morgan Z., Crowley M. R., Vielzeuf D., and Stolper E. 2008. Zoning of phosphorus in igneous olivine. Contributions to Mineralogy and Petrology 115:739765.
  • Monders A. G., Médard E., and Grove T. L. 2007. Phase equilibrium investigations of the Adirondack class basalts from the Gusev plains, Gusev crater, Mars. Meteoritics & Planetary Science 42:131148.
  • Musselwhite D. S., Dalton H. A., Kiefer W. S., and Treiman A. H. 2006. Experimental petrology of the basaltic shergottite Yamato-980459: Implications for the thermal structure of the Martian mantle. Meteoritics & Planetary Science 41:12711290.
  • Nekvasil H., Dondolini A., Horn J., Filiberto J., Long H., and Lindsley D. H. 2004. The origin and evolution of silica-saturated alkalic suites: An experimental study. Journal of Petrology 45:693721.
  • Nekvasil H., Filiberto J., McCubbin F. M., and Lindsley D. H. 2007. Alkalic parental magmas for chassignites? Meteoritics & Planetary Science 42:979992.
  • O'Neill H. S. and Pownceby M. I. 1993. Thermodynamic data from redox reactions at high-temperatures 1. An experimental and theoretical assessment of the electrochemical method using stabilized zirconia electrolytes, with revised values for the Fe–FeO, Co–CoO, Ni–NiO and Cu–Cu2O oxygen buffers, and new data for the W–WO2 buffer. Contributions to Mineralogy and Petrology 114:296314.
  • Ostertag R., Robertson P. B., Stoffler D., and Wohrmeyer C. 1985. First results of a multidisciplinary analysis of the Haughton Impact Crater, Devon Island, Canada. III. Petrography and shock metamorphism. Proceedings, 16th Lunar and Planetary Science Conference. pp. 633634.
  • Papike J. J., Karner J. M., Shearer C. K., and Burger P. V. 2009. Silicate mineralogy of Martian meteorites. Geochimica et Cosmochimica Acta 73:74437485.
  • Patiño Douce A. E. and Roden M. 2006. Apatite as a probe of halogen and water fugacities in the terrestrial planets. Geochimica et Cosmochimica Acta 70:31733196.
  • Patiño Douce A. E., Roden M. F., Chaumba J., Fleisher C., and Yogodzinski G. 2011. Compositional variability of terrestrial mantle apatites, thermodynamic modeling of apatite volatile contents, and the halogen and water budgets of planetary mantles. Chemical Geology 288:1431.
  • Peslier A. H., Woodland A. B., and Wolff J. A. 2008. Fast kimberlite ascent rates estimated from hydrogen diffusion profiles in xenolithic olivines from Southern Africa. Geochimica et Cosmochimica Acta 72:27112722.
  • Peslier A. H., Hnatyshin D., Herd C. D. K., Walton E. L., Brandon A. D., Lapen T. J., and Shafer J. T. 2010. Crystallization, melt inclusion, and redox history of a Martian meteorite: Olivine-phyric shergottite Larkman Nunatak 06319. Geochimica et Cosmochimica Acta 74:45434576.
  • Putirka K. D. 2005. Mantle potential temperatures at Hawaii, Iceland, and the mid-ocean ridge system, as inferred from olivine phenocrysts: Evidence for thermally driven mantle plumes. Geochemistry Geophysics Geosystems 6:14, doi: 10.1029/2005gc000915.
  • Qian Q., O'Neill H. St. C., and Hermann J. 2010. Comparative diffusion coefficients of major and trace elements in olivine at approximately 950 °C from a xenocryst included in dioritic magma. Geology 38:331334.
  • Sack R. O. and Ghiorso M. S. 1989. Importance of considerations of mixing properties in establishing an internally consistent Thermodynamic database—Thermochemistry of minerals in the system Mg2SiO4-Fe2SiO4-SiO2. Contributions to Mineralogy and Petrology 102:4168.
  • Sack R. O. and Ghiorso M. S. 1991a. Chromian spinels as petrogenetic indicators: Thermodynamic and petrologic applications. American Mineralogist 76:827847.
  • Sack R. O. and Ghiorso M. S. 1991b. An internally consistent model for the thermodynamic properties of Fe-Mg-titanomagnetite-aluminate spinels. Contributions to Mineralogy and Petrology 106:474505.
  • Sack R. O. and Ghiorso M. S. 1994a. Thermodynamics of multicomponent pyroxenes. 1. Formulation of a general-model. Contributions to Mineralogy and Petrology 116:277286.
  • Sack R. O. and Ghiorso M. S. 1994b. Thermodynamics of multicomponent pyroxenes. 2. Phase-relations in the quadrilateral. Contributions to Mineralogy and Petrology 116:287300.
  • Sack R. O. and Ghiorso M. S. 1994c. Thermodynamics of multicomponent pyroxenes. 3. Calibration of Fe2+(Mg)(-1), TiAl2(MgSi2)(-1), TiFe2(3+)(MgSi2)(-1), AlFe3+(MgSi)(-1), NaAl(CaMg)(-1), Al(-2)(MgSi)(-1) and Ca(Mg)(-1) exchange-reactions between pyroxenes and silicate melts. Contributions to Mineralogy and Petrology 118:271296.
  • Shearer C. K., Burger P. V., Papike J. J., Borg L. E., Irving A. J., and Herd C. D. K. 2008. Petrogenetic linkages among Martian basalts: Implications based on trace element chemistry of olivine. Meteoritics & Planetary Science 43:12411258.
  • Shearer C. K., Burger P. V., Papike J. J., Sharp Z. D., and McKeegan K. D. 2011. Fluids on differentiated asteroids: Evidence from phosphates in differentiated meteorites GRA 06128 and GRA 06129. Meteoritics & Planetary Science 46:13451362.
  • Spandler C. and O'Neill H. St. C. 2010. Diffusion and partition coefficients of minor and trace elements in San Carlos olivine at 1,300C with some geochemical implications. Contributions to Mineralogy and Petrology 159:791818.
  • Stolper E. M. and McSween H. Y. 1979. Petrology and origin of the shergottite meteorites. Geochimica et Cosmochimica Acta 43:14751498.
  • Stolper E., Baker M. B., Beckett J., McCanta M., and Saal A. 2009. Phosphorus zoning in olivine: A new source of information on the early magmatic histories of igneous rocks (abstract #V74B-01). American Geophysical Union, Spring Meeting 2009.
  • Stormer J. C. and Carmichael I. S. E. 1971. Fluorine-Hydroxyl exchange in apatite and biotite: A potential igneous geothermometer. Contributions to Mineralogy and Petrology 31:121131.
  • Taylor L. A., Nazarov M. A., Shearer C. K., Jr., McSween H. Y., Jr., Cahill J., Neal C. R., Ivanova M. A., Barsukova L. D., Lentz R. C., Clayton R. N., and Mayeda T. K. 2002. Martian meteorite Dhofar 019: A new shergottite. Meteoritics & Planetary Science 37:11071128.
  • Treiman A. H. 2003. Chemical compositions of Martian basalts (shergottites): Some inferences on basalt formation, mantle metasomatism, and differentiation in Mars. Meteoritics & Planetary Science 38:18491864.
  • Treiman A. H., Lindstrom D. J., and Martinez R. R. 1994. The parent magma of xenoliths in shergottite EETA79001: Bulk and trace element composition inferred from magmatic inclusions. 25th Lunar and Planetary Science Conference. p. 1709.
  • Usui T., McSween H. Y., Jr., and Floss C. 2008. Petrogenesis of olivine-phyric shergottite Yamato 980459, revisited. Geochimica et Cosmochimica Acta 72:17111730.
  • Wadhwa M., Lentz R C. F., McSween H. Y., Jr., and Crozaz G. 2001. A petrologic and trace element study of Dar al Gani 476 and Dar al Gani 489: Twin meteorites with affinities to basaltic and lherzolitic shergottites. Meteoritics & Planetary Science 36:195208.
  • Waenke H. 1991. Chemistry, accretion, and evolution of mars. Space Science Reviews 56:18.
  • Walton E. L., Irving A. J., Bunch T. E., and Herd C. D. K. 2012. Northwest Africa 4797: A strongly shocked ultramafic poikilitic shergottite related to compositionally intermediate Martian meteorites. Meteoritics & Planetary Science 47:14491474.
  • Webster J. D., Tappen C. M., and Mandeville C. W. 2009. Partitioning behavior of chlorine and fluorine in the system apatite-melt-fluid II: Felsic silicate systems at 200 MPa. Geochimica et Cosmochimica Acta 73:559581.
  • Westrich H. R. 1982. F-OH exchange equilibria between mica-amphibole mineral pairs. Contributions to Mineralogy and Petrology 78:318323.
  • Wones D. R. and Gilbert M. C. 1969. Fayalite-magnetite-quartz assemblage between 600° and 800 °C. American Journal of Science 267A:480488.