SEARCH

SEARCH BY CITATION

References

  • Amsden A. A. and Ruppel H. M. 1981. SALE-3D: A simplified ALE computer program for calculating three-dimensional fluid flow. Los Alamos National Laboratories Report LA-8905. 151 p.
  • Amsden A. A., Ruppel H. M., and Hirt C. W. 1980. SALE: A simplified ALE computer program for fluid flow at all speeds. Los Alamos National Laboratories Report LA-8095. 101 p.
  • Andreoli M. A. G., Hart R. J., Webb S. J., Cooper G. R. J., and Haddon I. 2008. The 144 Ma Morokweng impact structure, South Africa: Evidence for a 240 km crater (abstract #1236). 39th Lunar and Planetary Science Conference. CD-ROM.
  • Artemieva N. and Morgan J. 2009. Modeling the formation of the K-Pg boundary layer. Icarus 201:768780.
  • Artemieva N. A. and Shuvalov V. V. 2002. Shock metamorphism on the ocean floor (numerical simulations). Deep-sea Research II 49:959968.
  • Attrep M., Orth C. J., Quintana L. R., Shoemaker C. S., Shoemaker E. M., and Taylor S. R. 1991. Chemical fractionation of siderophile elements in impactites from Australian meteorite craters. 22nd Lunar and Planetary Science Conference. pp. 3940.
  • Baldwin E. C., Milner D. J., Burchell M. J., and Crawford I. A. 2007. Laboratory impacts into dry and wet sandstone with and without an overlying water layer: Implications for scaling laws and projectile survivability. Meteoritics & Planetary Science 42:19051914.
  • Benz W., Cameron A. G. W., and Melosh H. J. 1989. The origin of the moon and the single-impact hypothesis III. Icarus 81:113131.
  • Bland P. A. and Artemieva N. A. 2006. The rate of small impacts on Earth. Meteoritics & Planetary Science 41:607631.
  • Britt D. T., Yeomans D. K., Housen K. R., and Consolmagno G. 2002. Asteroid density, porosity and structure. In Asteroids III, edited by Bottke W., Cellino A., Paolicchi P., and Binzel R. P. Tucson, Arizona: The University of Arizona Press. pp. 485501.
  • Chapman C. R., Harris A. W., and Binzel R. P. 1994. Physical properties of near-Earth asteroids: Implications for the hazard issue. In Hazards due to comets and asteroids, edited by Gehrels T. Tucson, Arizona: The University of Arizona Press. pp. 537551.
  • Collins G. S. and Wünnemann K. 2005. How big was the Chesapeake Bay impact? Insight from numerical modeling. Geology 33:925928.
  • Collins G. S., Morgan J., Barton P., Christeson G., Gulick S., Urritia J., Warner M., and Wünnemann K. 2008. Dynamic modeling suggests terrace zone asymmetry in the Chicxulub crater is caused by target heterogeneity. Earth and Planetary Science Letters 270:221230.
  • Corner B., Reimold W. U., Brandt D., and Koeberl C. 1997. Morokweng impact structure, northwest province, South Africa: Geophysical imaging and shock petrographic studies. Earth and Planetary Science Letters 146:351364.
  • Davison T. M., Collins G. S., and Ciesla F. J. 2010. Numerical modelling of heating in porous planetesimal collisions. Icarus 208:468481.
  • Ebel D. S. and Grossman L. 2005. Spinel-bearing spherules condensed from the Chicxulub impact-vapor plume. Geology 33:293296.
  • Elbeshausen D., Wünnemann K., and Collins G. S. 2009. Scaling of oblique impacts in frictional targets: Implications for crater size and formation mechanisms. Icarus 204:716731.
  • Gault D. E. and Sonnet C. P. 1982. Laboratory simulation of pelagic asteroid impact: Atmospheric injection, benthic topography, and the surface wave radiation. In Geological implications of impacts of large asteroids and comets on the earth, edited by Silver L. T. and Schultz P. H. GSA Special Paper 190. Boulder, Colorado: Geological Society of America. pp. 6992.
  • Gault D. E. and Wedekind J. A. 1978. Experimental studies of oblique impact. Proceedings, 9th Lunar and Planetary Science Conference. pp. 38433875.
  • Harris A. W. and Lagerros J. S. V. 2002. Asteroids in the thermal infrared. In Asteroids III, edited by Bottke W. F., Cellino A., Paolicchi P., and Binzel R. P. Tucson, Arizona: The University of Arizona Press. pp. 205219.
  • Hart R. J., Andreoli M. A. G., Tredoux M., Moser D., Ashwal L. D., Eide E. A., Webb S. J., and Brandt D. 1997. Late Jurassic age for the Morokweng impact structure, southern Africa. Earth and Planetary Science Letters 147:2535.
  • Hart R. J., Cloete M., McDonald I., Carlson R. W., and Andreoli M. A. G. 2002. Siderophile-rich inclusions from the Morokweng impact melt sheet, South Africa: Possible fragments of a chondritic meteorite. Earth and Planetary Science Letters 198:4962.
  • Henkel H., Reimold W. U., and Koeberl C. 2002. Magnetic and gravity model of the Morokweng impact structure. Journal of Applied Geophysics 49:129147.
  • Hudson R. S. and Ostro S. J. 1994. Shape of asteroid 4769 Castalia (1989 PB) from inversion of radar images. Science 263:940943.
  • Jourdan F., Andreoli M. A. G., McDonald I., and Maier W. D. 2010. 40Ar/ 39Ar thermochronology of the fossil LL6-chondrite from the Morokweng crater, South Africa. Geochimica et Cosmochimica Acta 74:17341747.
  • Keil K., Stöffler D., Love S. G., and Scott E. R. D. 1997. Constraints on the role of impact heating and melting in asteroids. Meteoritics & Planetary Science 32:349363.
  • Koeberl C. 1998. Identification of meteoritic components in impactites. In Meteorties: Flux with time and impact effects, edited by Grady M. M., Hutchison R., McCall G. J. H., and Rothery D. A. GSL Special Publication 140. London: Geological Society of London. pp. 133152.
  • Koeberl C., Armstrong R., and Reimold W. U. 1997. Morokweng, South Africa: A large impact structure of Jurassic-Cretaceous boundary age. Geology 25:731734.
  • Koeberl C., Peucker-Ehrenbrink B., Reimold W. U., Shukolyukov A., and Langmair G. W. 2002. Comparison of the osmium and chromium isotopic methods for detection of meteoritic components in impactites: Examples from the Morokweng and Vredefort impact structures, South Africa. In Catastrophic events and mass extinctions: Impacts and beyond, edited by Koeberl C. and MacLeod K. G. GSA Special Paper 356. Boulder, Colorado: Geological Society of America. pp. 607617.
  • Kyte F. T. 1998. A meteorite from the Cretaceous/Tertiary boundary. Nature 396:237239.
  • Maier W. D., Andreoli M. A. G., McDonald I., Higgins M. D., Boyce A. J., Shukolyukov A., Lugmair G. W., Ashwal L. D., Graser P., Ripley E. M., and Hart R. J. 2006. Discovery of a 25 cm asteroid clast in the giant Morokweng impact crater, South Africa. Nature 441:203206.
  • Marchis F., Kaasalainen M., Hom E. F. Y., Berthier J., Enriquez J., Hestroffer D., Le Mignant D., and de Pater I. 2006. Shape, size and multiplicity of main belt asteroids I. Keck Adaptive Optics survey. Icarus 185:3963.
  • McDonald I., Andreoli M. A. G., Hart R. J., and Tredoux M. 2001. Platinum-group elements in the Morokweng impact structure, South Africa: Evidence for the impact of a large ordinary chondrite projectile at the Jurassic-Cretaceous boundary. Geochimica et Cosmochimica Acta 65:299309.
  • Melosh H. J. 1987. High-velocity solid ejecta fragments from hypervelocity impacts. International Journal of Impact Engineering 5:483492.
  • Melosh H. J. 1989. Impact cratering: A geologic process. New York: Oxford University Press. 245 p.
  • Melosh H. J. 2007. A hydrocode equation of state for SiO2. Meteoritics & Planetary Science 42:20792098.
  • Milner D. J., Baldwin E. C., and Burchell M. J. 2008. Laboratory investigations of marine impact events: Factors influencing crater formation and projectile survivability. Meteoritics & Planetary Science 43:20152026.
  • Milton D. J. 1968. Structural geology of the Henbury meteorite craters Northern Territory, Australia. Geological Survey Professional Paper 599-C. Washington, D.C.: U.S. Government Printing Office. 17 p.
  • Pierazzo E. and Melosh H. J. 1999. Hydrocode modeling of Chicxulub as an oblique impact event. Earth and Planetary Science Letters 165:163176.
  • Pierazzo E. and Melosh H. J. 2000. Hydrocode modeling of oblique impacts: The fate of the projectile. Meteoritics & Planetary Science 35:117130.
  • Pierazzo E., Vickery A. M., and Melosh H. J. 1997. A reevaluation of impact melt production. Icarus 127:408423.
  • Pierazzo E., Kring D. A., and Melosh H. J. 1998. Hydrocode simulation of the Chicxulub impact event and the production of climatically active gases. Journal of Geophysical Research 103:2860728626.
  • Rowan L. R. and Hörz F. 1995. Deciphering projectile compositions of impact craters via shock recovery experiments on simple metal-silicate systems. 26th Lunar and Planetary Science Conference. pp. 11931194.
  • Schmitt R. T. 2000. Shock experiments with the H6 chondrite Kernouvè: Pressure calibration of microscopic shock effects. Meteoritics & Planetary Science 35:545560.
  • Schultz P. H. and Sugita S. 1997. Fate of the Chicxulub impact (abstract #1792). 28th Lunar and Planetary Science Conference. CD-ROM.
  • Shuvalov V. V. and Trubetskaya I. A. 2007. Numerical modeling of the formation of the Eltanin submarine impact structure. Solar System Research 41:5664.
  • Szabo G. M. and Kiss L. L. 2008. The shape distribution of asteroid families: Evidence for evaluation driven by small impacts. Icarus 196:135143.
  • Tagle R. and Hecht L. 2006. Geochemical identification of projectiles in impact rocks. Meteoritics & Planetary Science 41:17211735.
  • Turtle E. P. and Pierazzo E. 2001. Thickness of an Europan ice shell from impact crater simulations. Science 294:13261328.
  • Watson W. W. 1978. Letter on the porosity of asteroids. The Minor Planet Bulletin 5:32.
  • Wilkison S. L., McCoy T. J., McCamant J. E., Robinson M. S., and Britt D. T. 2003. Porosity and density of ordinary chondrites: Clues to the formation of friable and porous ordinary chondrites. Meteoritics & Planetary Science 38:15331546.
  • Wünnemann K., Collins G. S., and Melosh H. J. 2006. A strain-based porosity model for use in hydrocode simulations of impacts and implications for transient crater growth in porous targets. Icarus 180:514527.
  • Wünnemann K., Collins G. S., and Osinski G. R. 2008. Numerical modeling of impact melt production in porous rocks. Earth and Planetary Science Letters 269:529538.
  • Wünnemann K., Collins G. S., and Weiss R. 2010. Impact of a cosmic body into Earth's ocean and the generation of large tsunami waves: Insight from numerical modeling. Reviews of Geophysics 48:RG4006.