SEARCH

SEARCH BY CITATION

References

  • Anders E. 1964. Origin, age and composition of meteorites. Space Science Review 3:583714.
  • Beck P., Gillet P., Gautron L., Daniel I, and El Goresy A. 2004. A new natural high-pressure (Na,Ca)-hexaluminosilicate [(CaxNa1-x)Al3+xSi3-xO11] in shocked Martian meteorites. Earth and Planetary Science Letters 219:112.
  • Beck P., Gillet Ph., El Goresy A., and Mostefaoui S. 2005. Time scales of shock processes in chondritic and Martian meteorites. Nature 435:10711074.
  • Beck P., Ferroir T., and Gillet P. 2007. Shock-induced compaction, melting, and entrapment of atmospheric gases in Martian meteorites. Geophysical Research Letters 34:L01203, doi:10.1029/2006GL028141.
  • Bogard D. D. 1995. Impact ages of meteorites: A synthesis. Meteoritics 30:244268.
  • Bogard D. D. and Johnson P. 1983. Martian gases in an Antarctic meteorite. Science 221:651654.
  • Bogard D. D., Hörz F., and Johnson P. 1989. Shock-implanted noble gases II: Additional experimental studies and recognition in naturally shocked terrestrial materials. Meteoritics 24:113123.
  • Bouhifd M., Besson P., Courtial P., Gerardin C., Navrotsky A., and Richet P. 2007. Thermochemistry and melting properties of basalt. Contributions to Mineralogy and Petrology 153:689698.
  • Chen M., Sharp T. G., El Goresy A., Wopenka B., and Xie X. D. 1996. The majorite-pyrope-magnesiowüstite assemblage: Constraints on the history of shock veins in chondrite. Science 271:15701573.
  • Chennaoui Aoudjehane H., Jambon A., Reynard B., and Blanc P. 2005. Silica as a shock index in shergottites: A cathodoluminescence study. Meteoritics & Planetary Science 40:967979.
  • Davis P. K. 1977. Effects of shock pressure on 40Ar-39Ar radiometric age determinations. Geochimica et Cosmochica Acta 41:195205.
  • Dodd R. T. and Jarosewich E. 1979. Incipient melting in and shock classification of L-group chondrites. Earth and Planetary Science Letters 44:335340.
  • Dodd R. T. and Jarosewich E. 1982. The compositions of incipient shock melts in L6 chondrites. Earth and Planetary Science Letters 59:355363.
  • Fredriksson K., DeCarli P. S., and Aaramäe A. 1963. Shock-induced veins in chondrites. In Space research III, proceedings of the Third International Space Science Symposium, edited by Priester W. Amsterdam: North Holland Publishing. pp. 974983.
  • Fritz J. and Greshake A. 2009. High-pressure phases in an ultramafic rock from Mars. Earth and Planetary Science Letters 288:619623.
  • Gillet P., Chen C., Dubrovinsky L. and El Goresy A. 2000. Natural NaAlSi3O8-hollandite in the shocked Sixiangkou meteorite. Science 287:16331636.
  • Gillet P., El Goresy A., Beck P., and Chen M. 2007. High-pressure mineral assemblages in shocked meteorites and terrestrial rocks: Mechanisms of phase transformations and constraints on pressure and temperature histories. Geological Society of America Special Paper 421:5782.
  • Hirose K. and Fei Y. 2002. Subsolidus and melting phase relations of basaltic composition in the uppermost lower mantle. Geochimica et Cosmochimica Acta 66:20992108.
  • Imae N. and Ikeda Y. 2010. High-pressure polymorphs of magnesian orthopyroxene from a shock vein in the Yamato-000047 lherzolitic shergottite. Meteoritics & Planetary Science 45:4354.
  • Langenhorst F. and Poirier J. P. 2000. Anatomy of black veins in Zagami: Clues to the formation of high-pressure phases. Earth and Planetary Science Letters 184:3755.
  • Leroux H. Doukham J.-C., and Guyot F. 2000. Metal-silicate interaction in quenched shock-induced melt of the Tenham L6 chondrite. Earth and Planetary Science Letters 179:477487.
  • Lofgren G. 1980. Experimental studies on the dynamic crystallization of silicate melts. In Physics of magmatic processes, edited by Hargraves R. B. Princeton, New Jersey: Princeton University Press. pp. 487551.
  • Malavergne V., Guyot F., Benzerara K., and Martinez I. 2001. Description of new-shock-induced phases in the SNC meteorites: Shergotty, Nakhla, Chassigny and Zagami. Meteoritics & Planetary Science 36:12971305.
  • Marti K., Kim J. S., Thakur A. N., McCoy T. J., and Keil K. 1995. Signatures of the Martian atmosphere in glass of the Zagami meteorite. Science 267:19831984.
  • McConville P., Kelley S. and Turner G. 1988. Laser probe 40Ar-39Ar studies of Peace River shocked L6 chondrite. Geochimica et Cosmochimica Acta 52:24872499.
  • Miyahara M., Ohtani E., Ozawa S., Kimura M., El Goresy A., Sakai T., Nagase T., Higara K., Hirao N., and Ohishi Y. 2011 Natural dissociation of olivine to (Mg,Fe)SiO3 perovskite and magnesiowüstite in a shocked Martian meteorite. Proceedings of the National Academy of Sciences 108:59996003, doi:10.1073/pnas.1016921108.
  • Murase T. and McBirney A. R. 1973. Properties of some common igneous rocks and their melts at high temperatures. Geological Society of America Bulletin 84:35633592.
  • Mysen B. O., Virgo D., and Seifert F. A. 1985. Relationships between properties and structure of aluminosilicate melts. American Mineralogist 70:88105.
  • Nowak M., Schreen D., and Spickenbom K. 2004. Argon and CO2 on the race track in silicate melts: A tool for the development of a CO2 speciation and diffusion model. Geochimica et Cosmochimica Acta 68:51275138.
  • Nyquist L. E., Bogard D. D., Shih C. Y., Greshake A., Stöffler D., and Eugster O. 2001. Ages and geologic histories of Martian meteorites. Space Science Reviews 96:105164.
  • Ohtani E., Kimura Y., Kimura M., Takata T., Kondo T., and Kubo T. 2004. Formation of high-pressure minerals in shocked L6 chondrite Yamato 791384: Constraints on shock conditions and parent body size. Earth and Planetary Science Letters 227:505515.
  • Owen T., Biemann K., Rushnueck D. R., Howarth D. W., and Lafleur A. L. 1977. The composition of the atmosphere at the surface of Mars. Journal of Geophysical Research 82:46354639.
  • Roselieb K., Rammensee W., Buettner H., and Rosenhauer M. 1995. Diffusion of noble gases in melts of the system SiO2-NaAlSi2O6. Chemical Geology 120:113.
  • Russell S. S., Folco L., Grady M. M., Zolensky M. E., Jones R., Righter K., Zipfel J., and Grossman J. N. 2004. The Meteoritical Bulletin, No. 88. Meteoritics & Planetary Science 39:A215A272.
  • Sharp T. G. and DeCarli P. S. 2006. Shock effects in meteorites. In Meteorites and the early solar system, edited by Lauretta D. S. and McSween H. Y Jr. Tucson, Arizona: The University of Arizona Press. pp. 653678.
  • Sharp T. G., Xie Z., Aramovich C. J., and DeCarli P. S. 2003. Pressure-temperature histories of shock veins (abstract #1278). 34th Lunar and Planetary Science Conference. CD-ROM.
  • Spickenbom K., Sierralta M., and Nowak M. 2010. Carbon dioxide and argon diffusion in silicate melts: Insights into the CO2 speciation in magmas. Geochimica et Cosmochimica Acta 74:65416564.
  • Stöffler D., Keil K., and Scott E. R. D. 1991. Shock metamorphism of ordinary chondrites. Geochimica et Cosmochimica Acta 55:38453867.
  • Treiman A. H. 1995. The history of Allan Hills 84001 revised: Multiple shock events. Meteoritics & Planetary Science 30:294302.
  • Treiman A. H., McKay G. A., Bogard D. D., Wang M.-S., Lipschutz M. E., Mittlefehldt D. W., Keller L., Lindstrom M. M., and Grady M. M. 1994. Comparison of LEW 88516 and ALHA77005 Martian meteorites: Similar but distinct. Meteoritics 29:581592.
  • Walton E. L. and Shaw C. S. J. 2009. Understanding the textures and origin of shock melt pockets in Martian meteorites from petrographic studies, comparisons with terrestrial mantle xenoliths, and experimental studies. Meteoritics & Planetary Science 44:5576.
  • Walton E. L. and Spray J. G. 2003. Mineralogy, microtexture and composition of shock-induced melt pockets in the Los Angeles basaltic shergottite. Meteoritics & Planetary Science 38:18651875.
  • Walton E., Shaw C. S. J., Cogswell S., and Spray J. G. 2006. Crystallization rates of shock melts in three Martian basalts: Experimental simulation with implications for meteoroid dimensions. Geochimica et Cosmochimica Acta 70:10591075.
  • Walton E. L., Kelley S. P., and Spray J. G. 2007. Shock implantation of Martian atmospheric argon in four basaltic shergottites: A laser probe Ar-40/Ar-39 investigation. Geochimica et Cosmochimica Acta 71:497520.
  • Walton E. L., Kelley S. P., and Herd C. D. K. 2008. Isotopic and petrographic evidence for young Martian basalts. Geochimica et Cosmochimica Acta 72:58195837.
  • Walton E. L., Irving A. J., Bunch T. E., and Herd C. D. K. 2012. Northwest Africa 4797: A strongly shocked ultramafic poikilitic shergottite related to compositionally intermediate Martian meteorites. Meteoritics & Planetary Science 47:14491474.
  • Wang W. and Takahashi E. 1999. Subsolidus and melting experiments of a K-rich basaltic compostion to 27 GPa: Implication for the behavior of potassium in the mantle. American Mineralogist 84:357361.
  • Warren P. H., Greenwood J. P., and Rubin A. E. 2004. Los Angeles: A tale of two stones. Meteoritics & Planetary Science 39:137156.
  • Wiens R. C. and Pepin R. O. 1988. Laboratory shock emplacement of noble gases, nitrogen, and carbon dioxide into basalt, and implications for trapped gas in shergottites EETA79001. Geochimica et Cosmochimica Acta 52:295307.
  • Wohletz K., Civetta L., and Orsi G. 1999. Thermal evolution of the Phlegraean magmatic system. Journal of Volcanology and Geothermal Research 91:391414.
  • Xie Z., Tomioka N., and Sharp T. G. 2002. Natural occurrence of Fe2SiO4-spinel in the shocked Umbarger L6 chondrite. American Mineralogist 87:12571260.
  • Xie Z., Sharp T. G., and DeCarli P. S. 2006. High-pressure phases in a shock-induced melt vein of the Tenham L6 chondrite: Constraints on shock pressure and duration. Geochimica et Cosmochimica Acta 70:504515.
  • Zhang Y. 2008. Geochemical kinetics. Princeton, New Jersey: Princeton University Press.
  • Zhang Y., Ni H., and Chen Y. 2010. Diffusion data in silicate melts. In Diffusion in minerals and melts, edited by Zhang Y. and Cherniak D. Mineralogical Society of America/Geochemical Society 72:311408.
  • Zipfel J., Scherer P., Spettel B., Dreibus G., and Schultz L. 2000. Petrology and chemistry of the new shergottite Dar al Gani 476. Meteoritics & Planetary Science 35:95106.