SEARCH

SEARCH BY CITATION

References

  • Bourova E., Richet P., and Petitet J. P. 2006. Coesite (SiO2) as an extreme case of superheated crystal: An X-ray diffraction study up to 1776 K. Chemical Geology 229:5763.
  • Chao E. C. T. 1967. Shock effects in certain rock-forming minerals. Science 156:192202.
  • Chen M., Xiao W., Xie X., Tan D., and Cao Y. 2010a. Xiuyan crater, China: Impact origin confirmed. Chinese Science Bulletin 55:17771781.
  • Chen M., Xiao W., and Xie X. 2010b. Coesite and quartz characteristic of crystallization from shock-produced silica melt in the Xiuyan crater. Earth and Planetary Science Letters 297:306314.
  • Chen M., Koeberl C., Xiao W., Xie X., and Tan D. 2011. Planar deformation features in quartz from impact-produced polymict breccia of the Xiuyan crater, China. Meteoritics & Planetary Science 46:729736.
  • Engelhardt W. von, Arndt J., Stöffler D., Müller E. F., Jeziprkowski H., and Gubser R. A. 1967. Diaplectische Gläser in den Breccien des Ries von Nördlingen als Anzeichen für Stoßwellenmetamorphose. Contributions to Mineralogy and Petrology 15:91100.
  • French B. M. 1998. Traces of catastrophe: A handbook of shock-metamorphic effects in terrestrial meteorite impact structures. LPI Contribution 954. Houston, Texas: Lunar and Planetary Institute. 120 p.
  • Glass B. P. and Liu S. 2001. Discovery of high-pressure ZrSiO4 polymorph in naturally occurring shock-metamorphosed zircons. Geology 29:371373.
  • Glass B. P., Liu S., and Leavens P. B. 2002. Reidite: An impact-produced high-pressure polymorph of zircon found in marine sediments. American Mineralogist 87:562565.
  • Grieve R. A. F., Langenhorst F., and Stöffler D. 1996. Shock metamorphism of quartz in nature and experiment: II. Significance in geoscience. Meteoritics & Planetary Science 31:635.
  • Gucsik A., Koeberl C., Brandstätter F., Libowitzky E., and Reimold W. U. 2004a. Cathodoluminescence, electron microscopy, and Raman spectroscopy of experimentally shock metamorphosed zircon crystals and naturally shocked zircon from the Ries impact crater. In Cratering in marine environments and on ice, edited by Dypvik H., Burchell M., and Claeys P. Heidelberg, Germany: Springer-Verlag. pp. 281322.
  • Gucsik A., Zhang M., Koeberl C., Salje E. K. H., Redfern S. A. T., and Pruneda J. M. 2004b. Infrared and Raman spectra of ZrSiO4 experimentally shocked at high pressures. Mineralogical Magazine 68:801811.
  • Harrison W. J. and Hörz F. 1981. Experimental shock metamorphism of calcic plagioclase. Proceedings, 12th Lunar and Planetary Science Conference. pp. 395397.
  • Knittle E. and Williams Q. 1993. High-pressure Raman spectroscopy of ZrSiO4: Observation of the zircon to scheelite transition at 300 K. American Mineralogist 78:245252.
  • Kusaba K., Syono Y., Kikuchi M., and Fukuoka K. 1985. Shock behavior of zircon: Phase transition to scheelite structure and decomposition. Earth and Planetary Science Letters 72:433439.
  • Kusaba K., Yagi T., Kikuchi M., and Syono Y. 1986. Structural considerations on the mechanism of the shock-induced zircon–scheelite transition in ZrSiO4. Journal of Physics and Chemistry of Solids 47:675679.
  • Leroux H., Reimold W. U., Koeberl C., Hornemann U., and Doukhan J. C. 1999. Experimental shock deformation in zircon: A transmission electron microscopic study. Earth and Planetary Science Letters 169:291301.
  • Liu L. G. 1979. High-pressure phase transformations in baddeleyite and zircon, with geophysical implications. Earth and Planetary Science Letters 44:390396.
  • Liu K. X., Chen M., Ding X. F., Fu D. P., Ding P., Shen C. D., and Xiao W. S. 2013. AMS radiocarbon dating of lacustrine sediment from an impact crater in northeastern China. Nuclear Instruments and Methods in Physics Research Section B 294:593596.
  • Malone L., Boonsue S., Spray J., and Wittmann A. 2010. Zircon-reidite relations in breccias from the Chesapeake Bay impact structure (abstract #2286). 41st Lunar and Planetary Science Conference. CD-ROM.
  • Mashimo T., Nagayama K., and Sawaoka A. 1983. Shock compression of zirconia ZrO2 and zircon ZrSiO4 in the pressure range up to 150 GPa. Physics and Chemistry of Minerals 9:237247.
  • Metzler A., Ostertag R., Redeker H. J., and Stöffler D. 1988. Composition of the crystalline basement and shock metamorphism of crystalline and sedimentary target rocks at the Haughton impact crater, Devon Island, Canada. Meteoritics 23:197207.
  • Schmitt R. T. 2000. Shock experiments with the H6 chondrite Kernouvé: Pressure calibration of microscopic shock effects. Meteoritics & Planetary Science 35:545560.
  • Stöffler D. 1971. Progressive metamorphism and classification of shocked and brecciated crystalline rocks at impact craters. Journal of Geophysical Research 76:55415551.
  • Stöffler D. 1972. Deformation and transformation of rock-forming minerals by natural and experimental shock processes. I. Behavior of minerals under shock compression. Fortschritte Mineralogie 49:50113.
  • Stöffler D. and Grieve R. A. F. 2007. Impactites. In Metamorphic rocks: A classification and glossary of terms, recommendations of the International Union of Geological Sciences, edited by Fettes D. and Desmons J. Cambridge, UK: Cambridge University Press. pp. 8292, 111125, and 126242.
  • Stöffler D. and Langenhorst F. 1994. Shock metamorphism of quartz in nature and experiment: I. Basic observation and theory. Meteoritics 29:155181.
  • Stöffler D., Keil K., and Scott E. R. D. 1991. Shock metamorphism of ordinary chondritis. Geochimica et Cosmochimica Acta 55:38453867.
  • Velde B., Syono Y., Kikuchi M., and Boyer H. 1989. Raman microprobe study of synthetic diaplectic plagioclase feldspars. Physics and Chemistry of Minerals 16:436441.
  • Wittmann A., Kenkmann T., Schmitt R. T., and Stöffler D. 2006. Shock-metamorphosed zircon in terrestrial impact craters. Meteoritics & Planetary Science 41:433454.
  • Zhang J., Li B., Utsmi W., and Liebermann R. C. 1996. In situ X-ray observations of the coesite-stishovite transition: Reversed phase boundary and kinetics. Physics and Chemistry of Minerals 23:110.