SEARCH

SEARCH BY CITATION

References

  • Alibés A., Labay J., and Canal R. 2001. Galactic chemical abundance evolution in the solar neighborhood up to the iron peak. Astronomy & Astrophysics 370:11031121.
  • Anders E. and Grevesse N. 1989. Abundances of the elements—Meteoritic and solar. Geochimica et Cosmochimica Acta 53:197214.
  • Asplund M., Grevesse N., Sauval A. J., and Scott P. 2009. The chemical composition of the Sun. Annual Review of Astronomy and Astrophysics 47:481522.
  • Barbuy B. and Erdelyi-Mendes M. 1989. Oxygen in old and thick disk stars. Astronomy & Astrophysics 214:239248.
  • Bensby T. and Feltzing S. 2006. The origin and chemical evolution of carbon in the galactic thin and thick discs. Monthly Notices of the Royal Astronomical Society 367:11811193.
  • Bensby T., Feltzing S., and Lundstrom I. 2003. Elemental abundance trends in the galactic thin and thick disks as traced by nearby F and G dwarf stars. Astronomy & Astrophysics 410:527551.
  • Bensby T., Feltzing S., Lundstrom I., and Ilion I. 2005. α-, r-, and s-process element trends in the galactic thin and thick disks. Astronomy & Astrophysics 433:185203.
  • Bi S. L., Li T. D., Li L. H., and Yang W. M. 2011. Solar models with revised abundance. The Astrophysical Journal Letters 731:L4245.
  • Boesgaard A. M., King J. R., Deliyannis C. P., and Vogt S. S. 1999. Oxygen in unevolved metal-poor stars from Keck ultraviolet HIRES spectra. The Astronomical Journal 117:492507.
  • Brewer M. and Carney B. W. 2006. A comparison of the chemical evolutionary histories of the galactic thin disk and thick disk stellar populations. The Astronomical Journal 131:431454.
  • Carbon D. F., Barbuy B., Kraft R. P., Friel E. D., and Suntzeff N. B. 1987. Carbon and nitrogen abundances in metal-poor dwarfs of the solar neighbourhood. Astronomical Society of the Pacific Publications 99:335368.
  • Carney B. W., Yong D., Teixera de A., Maria L., and Seitzer P. 2005. Elemental abundance ratios in stars of the outer galactic disk. II. Field red giants. The Astronomical Journal 130:11111126.
  • Carraro G., Bresolin F., Villanova S., Matteucci F., Patat F., and Romaniello M. 2004. Metal abundances in extremely distant galactic old open clusters. I. Berkeley 29 and Saurer 1. The Astronomical Journal 128:16761683.
  • Carretta E., Gratton R. G., and Sneden C. 2000. Abundances of light elements in metal-poor stars. III. Data analysis and results. Astronomy & Astrophysics 356:238252.
  • Cayrel R., Depagne E., Spite M., Hill V., Spite F., François P., Plez B., Beers T., Primas F., Andersen J., Barbuy B., Bonifacio P., Molaro P., and Nordström B. 2004. First stars V—Abundance patterns from C to Zn and supernova yields in the early galaxy. Astronomy & Astrophysics 416:11171138.
  • Cescutti G., François P., Matteucci F., Cayrel R., and Spite M. 2006. The chemical evolution of barium and europium in the Milky Way. Astronomy & Astrophysics 448:557569.
  • Cescutti G., Matteucci F., McWilliam A., and Chiappini C. 2009. The evolution of carbon and oxygen in the bulge and disk of the Milky Way. Astronomy & Astrophysics 505:605612.
  • Chang R. X., Hou J. L., Shu C. G., and Fu C. Q. 1999. Two-component model for the chemical evolution of the galactic disk. Astronomy & Astrophysics 350:3848.
  • Chen Y. Q., Nissen P. E., Zhao G., Zhang H. W., and Benoni T. 2000. Chemical composition of 90 F and G disk dwarfs. Astronomy & Astrophysics Supplement 141:191506.
  • Chiappini C. 2011. The chemical evolution of the galactic thick and thin disks. EAS Publications Series 45:293298.
  • Chiappini C., Matteucci F., and Gratton R. 1997. The chemical evolution of the galaxy: The two-infall model. The Astrophysical Journal 477:765780.
  • Chiappini C., Matteucci F., and Meynet G. 2003a. Stellar yields with rotation and their effect on chemical evolution models. Astronomy & Astrophysics 410:257267.
  • Chiappini C., Romano D., and Matteucci F. 2003b. Oxygen, carbon and nitrogen evolution in galaxies. Monthly Notices of the Royal Astronomical Society 339:6381.
  • Chieffi A. and Limongi M. 2004. Explosive yields of massive stars from Z = 0 to Z  =  Zsolar. The Astrophysical Journal 608:405410.
  • Clegg R. E. S., Tomkin J., and Lambert D. L. 1981. Carbon, nitrogen, and oxygen abundances in main-sequence stars. II 20 F and G stars. The Astrophysical Journal 250:262275.
  • Cristallo S., Piersanti L., Straniero O., Gallino R., Domínguez I., Abia C., Di Rico G., Quintini M., and Bisterzo S. 2011. Evolution, nucleosynthesis, and yields of low-mass asymptotic giant branch stars at different metallicities. II. The FRUITY database. The Astrophysical Journal Supplement 197:1738.
  • Dopita M. A. and Ryder S. D. 1994. On the law of star formation in disk galaxies. The Astrophysical Journal 430:163178.
  • Edvardsson B., Andersen J., Gustafsson B., Lambert D. L., Nissen P. E., and Tomkin J. 1993. The chemical evolution of the galactic disk—Part one—Analysis and results. Astronomy & Astrophysics 275:101152.
  • Feltzing S., Holmberg J., and Hurley J. R. 2001. The solar neighbourhood age-metallicity relation—Does it exist? Astronomy & Astrophysics 377:911924.
  • Fenner Y., Gibson B. K., Lee H. C., Karakas A. I., Lattanzio J. C., Chieffi A., Limongi M., and Yong D. 2003. The chemical evolution of magnesium isotopic abundances in the solar neighbourhood. Publications of the Astronomical Society of Australia 20:340344.
  • Forestini M. and Charbonnel C. 1997. Nucleosynthesis of light elements inside thermally pulsing AGB stars: I. The case of intermediate-mass stars. Astronomy & Astrophysics Supplement Series 123:241272.
  • François P. 1987. Determination of the sulphur abundance in metal-deficient dwarf stars. Astronomy & Astrophysics 176:294298.
  • François P. 1988. High resolution spectroscopy of metal-deficient dwarfs—Sulphur-to-iron ratio. Astronomy & Astrophysics 195:226229.
  • François P., Matteucci F., Cayrel R., Spite M., Spite F., and Chiappini C. 2004. The evolution of the Milky Way from its earliest phases: Constraints on stellar nucleosynthesis. Astronomy & Astrophysics 421:613621.
  • Goswami A. and Prantzos N. 2000. Abundance evolution of intermediate mass elements (C to Zn) in the Milky Way halo and disk. Astronomy & Astrophysics 359:191212.
  • Gratton R. G. 1985. Studies on the spectra of K-giants. III—Carbon, nitrogen, and oxygen abundances. Astronomy & Astrophysics 148:105114.
  • Gratton R. G. and Ortolani S. 1986. The forbidden O/Fe ratio in metal-poor late-type stars. Astronomy & Astrophysics 169:201207.
  • Gratton R. G. and Sneden C. 1988. Abundances in extremely metal-poor stars. Astronomy & Astrophysics 204:193218.
  • Gratton R. G. and Sneden C. 1991. Abundances of elements of the Fe-group in metal-poor stars. Astronomy & Astrophysics 241:501525.
  • Grevesse N., Asplund M., and Sauval A. J. 2007. The solar chemical composition. Space Science Review 130:105114.
  • Guesten R. and Mezger M. 1982. Star formation and abundance gradients in the galaxy. Vistas in Astronomy 26:159224.
  • Hartmann K. and Gehren T. 1988. Metal-poor subdwarfs and early galactic nucleosynthesis. Astronomy & Astrophysics 199:269290.
  • Huss G. R., Meyer B. S., Srinivasan G., Goswami J. N., and Sahijpal S. 2009. Stellar sources of the short-lived radionuclides in the early solar system. Geochimica et Cosmochimica Acta 73:49224945.
  • Israelian G., Garca Lpez R., and Rebolo R. 1998. Oxygen abundances in unevolved metal-poor stars from near-ultraviolet OH lines. The Astrophysical Journal 507:805817.
  • Iwamoto K., Brachwitz F., Nomoto K., Kishimoto N., Umeda H., Hix W. R., and Thielemann F. K. 1999. Nucleosynthesis in Chandrasekhar mass models for type IA supernovae and constraints on progenitor systems and burning-front propagation. The Astrophysical Journal Supplement 125:439462.
  • Jørgensen B. R. 2000. The G dwarf problem. Analysis of a new data set. Astronomy & Astrophysics 363:947957.
  • Karakas A. I. 2003. Asymptotic giant branch stars: Their influence on binary systems and the interstellar medium. Ph.D. thesis, Monash University, Clayton, Australia.
  • Karakas A. I. 2007. Asymmetrical planetary nebulae IV, La Palma June 18–22, (Article #63). http://www.iac.es/proyect/apn4.
  • Karakas A. I. 2010. Updated stellar yields from asymptotic giant branch models. Monthly Notices of the Royal Astronomical Society 403:14131425.
  • Karakas A. I. and Lattanzio J. C. 2003. Production of aluminium and the heavy magnesium isotopes in asymptotic giant branch stars. Publications of the Astronomical Society of Australia 20:279293.
  • Karakas A. I. and Lattanzio J. C. 2007. Stellar models and yields of asymptotic giant branch stars. Publications of the Astronomical Society of Australia 24:103117.
  • Karakas A. I., Lugaro M., Ugalde C., Wiescher M., and Görres J. 2006. Mg and Al production in intermediate-mass asymptotic giant branch stars. New Astronomy Review 50:500503.
  • Kobayashi C. and Nakasato N. 2011. Chemodynamical simulations of the Milky way galaxy. The Astrophysical Journal 729:1632.
  • Kobayashi C. and Nomoto K. 2009. The role of type Ia supernovae in chemical evolution. I. Lifetime of type Ia supernovae and metallicity effect. The Astrophysical Journal 707:14661484.
  • Kobayashi C., Umeda H., Nomoto K., Tominaga N., and Ohkubo T. 2006. Galactic chemical evolution: Carbon through zinc. The Astrophysical Journal 653:11451171.
  • Kobayashi C., Karakas A. I., and Umeda H. 2011. The evolution of isotope ratios in the Milky Way galaxy. Monthly Notices of the Royal Astronomical Society 414:32313250.
  • Kroupa P. 1998. The stellar mass function (invited review). In Brown dwarfs and extrasolar planets, edited by Rebolo R., Zapatero Osorio M. R., and Martin E. Proceedings ASP Conference Series, vol. 134. San Francisco, California: Astronomical Society of the Pacific. pp. 483494.
  • Laird J. B. 1985. Abundances in field dwarf stars. II—Carbon and nitrogen abundances. The Astrophysical Journal 289:556569.
  • Larson R. B. 1972. Infall of matter in galaxies. Nature 236:2123.
  • Limongi M., Straniero O., and Chieffi A. 2000. Massive stars in the range 13-25 Msolar: Evolution and nucleosynthesis. II. The solar metallicity models. The Astrophysical Journal Supplement 129:625664.
  • Lodders K. 2003. Solar system abundances and condensation temperatures of the elements. The Astrophysical Journal 591:12201247.
  • Lodders K. 2010. Solar system abundances of the elements. In Principles and perspectives in cosmochemistry, edited by Goswami A. and Eswar Reddy B. Astrophysics and Space Science Proceedings, Berlin: Springer-Verlag. pp. 379417.
  • Lodders K., Palme H., and Gail H.-P. 2009. Abundances of the elements in the solar system. In Solar system, edited by Trumper J. E., vol. 4B. Berlin: Springer-Verlag.
  • Luck R. E. and Bond H. E. 1985. Extremely metal-deficient red giants. IV—Equivalent widths for 36 halo giants. The Astrophysical Journal Supplement 59:249276.
  • Magain P. 1989. The chemical composition of the extreme halo stars. I—Blue spectra of 20 dwarfs. Astronomy & Astrophysics 209:211225.
  • Matteucci F. 2003. The chemical evolution of the galaxy. Dordrecht, The Netherlands: Kluwer Academic Publishers.
  • Matteucci F. and François P. 1989. Galactic chemical evolution—Abundance gradients of individual elements. Monthly Notices of the Royal Astronomical Society 239:885904.
  • Matteucci F. and Greggio L. 1986. Relative roles of type I and II supernovae in the chemical enrichment of the interstellar gas. Astronomy & Astrophysics 154:279287.
  • Matteucci F., Panagia N., Pipino A., Mannucci F., Recchi S., and Della V. M. 2006. A new formulation of the type Ia supernova rate and its consequences on galactic chemical evolution. Monthly Notices of the Royal Astronomical Society 372:265275.
  • Matteucci F., Spitoni E., Recchi S., and Valiante R. 2009. The effect of different type Ia supernova progenitors on galactic chemical evolution. Astronomy & Astrophysics 501:531538.
  • McWilliam A., Preston G. W., Sneden C., and Searle L. 1995. Spectroscopic analysis of 33 of the most metal poor stars II. The Astronomical Journal 109:27572799.
  • Meusinger H., Stecklum B., and Reimann H. G. 1991. The age-metallicity-velocity dispersion relation in the solar neighborhood and a simple evolution model. Astronomy & Astrophysics 245:5774.
  • Meyer M. R., Adams F. C., Hillenbrand L. A., Carpenter J. M., and Larson R. B. 2000. The stellar initial mass function: Constraints from young clusters, and theoretical perspectives. In Protostars and planets IV, edited by Mannings V., Boss A. P., and Russell S. S. Tucson, Arizona: The University of Arizona Press. 121 p.
  • Mishenina T. V., Korotin S. A., Klochkova V. G., and Panchuk V. E. 2000. Oxygen abundance in halo stars from O i triplet. Astronomy & Astrophysics 353:978986.
  • Nissen P. E., Gustafsson B., Edvardsson B., and Gilmore G. 1994. Chemical composition and atmospheric parameters of metal-poor halo stars. Astronomy & Astrophysics 285:440450.
  • Nordström B., Mayor M., Andersen J., Holmberg J., Pont F., Jørgensen B. R., Olsen E. H., Udry S., and Mowlavi N. 2004. The Geneva-Copenhagen survey of the solar neighbourhood. Ages, metallicities, and kinematic properties of 14000 F and G dwarfs. Astronomy & Astrophysics 418:9891019.
  • Pagel B. E. J. 1997. Nucleosynthesis and the chemical evolution of galaxies. Cambridge, UK: Cambridge University Press. 392 p.
  • Peterson R. C., Kurucz R. L., and Carney B. W. 1990. Relative abundance determinations in extremely metal poor giants. II—Transition probabilities and the abundance determinations. The Astrophysical Journal 350:173185.
  • Prantzos N. and Aubert O. 1995. On the chemical evolution of the galactic disk. Astronomy & Astrophysics 302:6985.
  • Prochaska J. X., Naumov S. O., Carney B. W., McWilliam A., and Wolfe A. M. 2000. The galactic thick disk stellar abundances. The Astronomical Journal 120:25132549.
  • Rana N. C. 1991. Chemical evolution of the galaxy. Annual Review of Astronomy and Astrophysics 29:129162.
  • Reddy B. E., Tomkin J., Lambert D. L., and Allende P. C. 2003. The chemical compositions of galactic disc F and G dwarfs. Monthly Notices of the Royal Astronomical Society 340:304340.
  • Rocha-Pinto H. J., Maciel W. J., Scalo J., and Flynn C. 2000. Chemical enrichment and star formation in the Milky Way disk. I. Sample description and chromospheric age-metallicity relation. Astronomy & Astrophysics 358:850868.
  • Romano D. and Matteucci F. 2003. Nova nucleosynthesis and galactic evolution of the CNO isotopes. Monthly Notices of the Royal Astronomical Society 342:185198.
  • Ryan S. G., Norris J. E., and Beers T. C. 1996. Extremely metal-poor stars. II. Elemental abundances and the early chemical enrichment of the galaxy. The Astrophysical Journal 471:254278.
  • Sahijpal S. and Gupta G. 2009. The plausible source(s) of 26Al in the early solar system: A massive star or the X-wind irradiation scenario? Meteoritics & Planetary Science 44:879890.
  • Sahijpal S. and Gupta G. 2010. The galactic chemical evolution. 16th National Space Science Symposium, Rajkot, India.
  • Sahijpal S. and Soni P. 2006. Stellar nucleosynthetic contribution of extinct short-lived nuclei in the early solar system and the associated isotopic effects. Meteoritics & Planetary Science 41:953976.
  • Sahijpal S., Goswami J. N., Davis A. M., Lewis R. S., and Grossman L. 1998. A stellar origin for the short-lived nuclides in the early solar system. Nature 391:559561.
  • Sahijpal S., Goswami J. N., and Davis A. M. 2000. K, Mg, Ti and Ca isotopic compositions and refractory trace element abundances in hibonites from CM and CV meteorites: Implications for early solar system processes. Geochimica et Cosmochimica Acta 64:19892005.
  • Salpeter E. 1955. The luminosity function and stellar evolution. The Astrophysical Journal 121:161167.
  • Scalo J. M. 1998. The stellar initial mass function. In ASP Conference Series, vol. 142 (38th Herstmonceux conference), edited by Gilmore G. and Howell D. San Francisco: Astronomical Society of the Pacific. 201 p.
  • Schmidt M. 1959. The rate of star formation. The Astrophysical Journal 129:243258.
  • Sneden C. and Crocker D. A. 1988. Copper and zinc in very metal-poor stars. The Astrophysical Journal 335:406414.
  • Sneden C., Gratton R.G., and Crocker D.A. 1991. Trends in copper and zinc abundances for disk and halo stars. Astronomy & Astrophysics 246:354367.
  • Stephens A. 1999. The chemical composition of halo stars on extreme orbits. The Astronomical Journal 117:17711791.
  • Talbot R. J. and Arnett W. D. 1975. The evolution of galaxies. IV—Highly flattened disks. The Astrophysical Journal 197:551570.
  • Tammann G. A., Loefler W., and Schroder A. 1994. The galactic supernova rate. The Astrophysical Journal Supplement 92:487493.
  • Thomas D., Greggio L., and Bender R. 1998. Stellar yields and chemical evolution—I. Abundance ratios and delayed mixing in the solar neighbourhood. Monthly Notices of the Royal Astronomical Society 296:119149.
  • Timmes F. X., Woosley S. E., and Weaver T. A. 1995. Galactic chemical evolution: Hydrogen through zinc. The Astrophysical Journal Supplement 98:617658.
  • Tomkin J., Sneden C., and Lambert D. L. 1986. Carbon abundances in halo dwarfs. The Astrophysical Journal 302:415420.
  • Travaglio C., Hillebrandt W., Reinecke M., and Thielemann F. K. 2004. Nucleosynthesis in multi-dimensional SN Ia explosions. Astronomy & Astrophysics 425:10291040.
  • Wakker B. P., Howk J. C., Savage B. D., Van Woerden H., Tufte S. L., Schwarz U. J., Benjamin R., Reynolds R. J., Peletier R. F., and Kalberla P. M. W. 1999. Accretion of low-metallicity gas by the Milky Way. Nature 402:388390.
  • Woosley S. E. and Heger A. 2007. Nucleosynthesis and remnants in massive stars of solar metallicity. Physics Reports 442:269283.
  • Woosley S. E. and Weaver T. A. 1995. The evolution and explosion of massive stars. II. Explosive hydrodynamics and nucleosynthesis. The Astrophysical Journal Supplement 101:181235.
  • Yong D., Carney B. W., Teixera de A., and Maria L. 2005. Elemental abundance ratios in stars of the outer galactic disk. I. Open clusters. The Astronomical Journal 130:597625.
  • Zhao G. and Magain P. 1990. The chemical composition of the extreme halo stars. II—Green spectra of 20 dwarfs. Astronomy & Astrophysics 238:242248.