SEARCH

SEARCH BY CITATION

References

  • Asimow P. D. and Ghiorso M. S. 1998. Algorithmic modifications extending MELTS to calculate subsolidus phase relations. American Mineralogist 83:11271131.
  • Bandfield J. L., Hamilton V. E., Christensen P. R., and McSween H. Y. 2004. Identification of quartzofeldspathic materials on Mars. Journal of Geophysical Research: Planets 109:E10009.
  • Barker F. 1979. Trondhjemite: Definition, environment and hypothesis of origin. In Trondhjemites, dacites and related rocks, edited by Barker F. New York: Elsevier. pp. 112.
  • Basu Sarbadhikari A., Day J. M. D., Liu Y., Rumble D., III, and Taylor L. A. 2009. Petrogenesis of olivine-phyric shergottite Larkman Nunatak 06319: Implications for enriched components in Martian basalts. Geochimica et Cosmochimica Acta 73:21902214.
  • Basu Sarbadhikari A., Goodrich C. A., Liu Y., Day J. M. D., and Taylor L. A. 2011. Evidence for heterogeneous enriched shergottite mantle sources in Mars from olivine-hosted melt inclusions in Larkman Nunatak 06319. Geochimica et Cosmochimica Acta 75:68036820.
  • Blichert-Toft J., Gleason J. D., Télouk P., and Albarède F. 1999. The Lu–Hf isotope geochemistry of shergottites and the evolution of the Martian mantle–crust system. Earth and Planetary Science Letters 173(1–2):2539.
  • Borg L. E. and Draper D. S. 2003. A petrogenetic model for the origin and compositional variation of the Martian basaltic meteorites. Meteoritics & Planetary Science 38:17131731.
  • Borg L. E., Nyquist L. E., Taylor L. A., Wiesmann H., and Shih C.-Y. 1997. Constraints on Martian differentiation processes from Rb-Sr and Sm-Nd isotopic analyses of the basaltic shergottite QUE 94201. Geochimica et Cosmochimica Acta 61:49154931.
  • Boyd F. and England J. 1963. Effect of pressure on the melting of diopside, CaMgSi2O6, and albite, NaAlSi3O8, in the range up to 50 kilobars. Journal of Geophysical Research 68:311323.
  • Brophy J. G. 1991. Composition gaps, critical crystallinity, and fractional crystallization in orogenic (calc-alkaline) magmatic systems. Contributions to Mineralogy and Petrology 109:173182.
  • Calvin C. and Rutherford M. 2008. The parental melt of lherzolitic shergottite ALH 77005: A study of rehomogenized melt inclusions. American Mineralogist 93:18861898.
  • Daly R. A. 1925. The geology of Ascension Island. Proceedings of the American Academy of Arts and Science 60:180.
  • Debaille V., Brandon A. D., O'Neill C., Yin Q. Z., and Jacobsen B. 2009. Early Martian mantle overturn inferred from isotopic composition of nakhlite meteorites. Nature Geoscience 2:548552.
  • Draper D. S. 2009. Yamato 980459 liquid line of descent at 0.5 GPa: Approaching QUE 94201 (abstract #1696). 40th Lunar and Planetary Science Conference. CD-ROM.
  • Dufek J. and Bachmann O. 2010. Quantum magmatism: Magmatic compositional gaps generated by melt-crystal dynamics. Geology 38:687690.
  • Filiberto J. and Dasgupta R. 2011. Fe2+–Mg partitioning between olivine and basaltic melts: Applications to genesis of olivine-phyric shergottites and conditions of melting in the Martian interior. Earth and Planetary Science Letters 304:527537.
  • Filiberto J. and Treiman A. H. 2009. Martian magmas contained abundant chlorine, but little water. Geology 37:10871090.
  • Filiberto J., Musselwhite D. S., Gross J., Burgess K., Le L., and Treiman A. H. 2010. Experimental petrology, crystallization history, and parental magma characteristics of olivine-phyric shergottite NWA 1068: Implications for the petrogenesis of “enriched” olivine-phyroc shergottites. Meteoritics & Planetary Science 45:12581270.
  • Galenas M. G., Jones J. H., and Danielson L. R. 2009. Experimental crystallization of Yamato 980459 (abstract #1920). 40th Lunar and Planetary Science Conference. CD-ROM.
  • Gan H. and Hess P. 1992. Phosphate speciation in potassium aluminosilicate glasses. American Mineralogist 77:495506.
  • Ghiorso M. S. and Sack R. O. 1995. Chemical mass transfer in magmatic processes. IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contributions to Mineralogy and Petrology 119:197212.
  • Greenwood J. P., Itoh S., Sakamoto N., Vicenzi E. P., and Yurimoto H. 2008. Hydrogen isotope evidence for loss of water from Mars through time. Geophysical Research Letters 35:L05203.
  • Greshake A., Fritz J., and Stöffler D. 2004. Petrology and shock metamorphism of the olivine-phyric shergottite Yamato 980459: Evidence for a two-stage cooling and a single-stage ejection history. Geochimica et Cosmochimica Acta 68:23592377.
  • Gross J., Treiman A. H., Filiberto J., and Herd C. D. K. 2011. Primitive olivine-phyric shergottite NWA 5789: Petrography, mineral chemistry, and cooling history imply a magma similar to Yamato-980459. Meteoritics & Planetary Science 46:116133.
  • Gross J., Filiberto J., Treiman A. H., Herd C. D. K., Daswani M. M., and Schwenzer S. P. 2012. Petrography, mineral chemistry, and crystallization history of olivine-phyric shergottite NWA 6234: A new intermediate melt composition (abstract #2693). 43rd Lunar and Planetary Science Conference. CD-ROM.
  • Harvey R. P. and McSween H. Y., Jr. 1992. The parent magma of the nakhlite meteorites: Clues from melt inclusions. Earth and Planetary Science Letters 111:467482.
  • Harvey R. P., Wadhwa M., McSween H. Y., Jr., and Crozaz G. 1993. Petrography, mineral chemistry, and petrogenesis of Antarctic Shergottite LEW 88516. Geochimica et Cosmochimica Acta 57:47694783.
  • Herd C. D. K. 2006. Insights into the redox history of the NWA 1068/1110 Martian basalt from mineral equilibria and vanadium oxybarometry. American Mineralogist 91:16161627.
  • Herd C. D. K., Borg L. E., Jones J. H., and Papike J. J. 2002. Oxygen fugacity and geochemical variations in the Martian basalts: Implications for Martian basalt petrogenesis and the oxidation state of the upper mantle of Mars. Geochimica et Cosmochimica Acta 66:20252036.
  • Jones J. H. 1989. Isotopic relationships among the shergottites, the nakhlites and Chassigny. Proceedings, 19th Lunar and Planetary Science Conference. pp. 465474.
  • Jones J. H. 2003. Constraints on the structure of the Martian interior determined from the chemical and isotopic systematics of SNC meteorites. Meteoritics & Planetary Science 38:18071814.
  • Koizumi E., Mikouchi T., McKay G., Monkawa A., Chokai J., and Miyamoto M. 2004. Yamato 984059: Crystallization of Martian magnesian magma (abstract #1494). 35th Lunar and Planetary Conference. CD-ROM.
  • Kring D. A., Gleason J. D., Swindle T. D., Nishiizumi K., Caffee M. W., Hill D. H., Jull A. J. T., and Boynton W. V. 2003. Composition of the first bulk melt sample from a volcanic region of Mars: Queen Alexandra Range 94201. Meteoritics & Planetary Science 38:18331848.
  • Leshin L. A. 2000. Insights into Martian water reservoirs from analyses of Martian meteorite QUE 94201. Geophysical Research Letters 27:20172020.
  • Longhi J. 1991. Comparative liquidus equilibria of hypersthene-normative basalts at low pressure. American Mineralogist 76:785800.
  • Longhi J. and Pan V. 1988. The parental magmas of the SNC meteorites. Proceedings, 19th Lunar and Planetary Science Conference. pp. 690691.
  • McCubbin F. M., Smirnov A., Nekvasil H., Wang J., Hauri E., and Lindsley D. H. 2010. Hydrous magmatism on Mars: A source of water for the surface and subsurface during the Amazonian. Earth and Planetary Science Letters 292:132138.
  • McCubbin F. M., Hauri E. H., Elardo S. M., Vander Kaaden K. E., Wang J., and Shearer C. K. 2012. Hydrous melting of the Martian mantle produced both depleted and enriched shergottites. Geology 40:683686.
  • McDade P., Wood B. J., Van Westrenen W., Brooker R., Gudmunsson G., Soulard H., Najorka J., and Blundy J. 2002. Pressure corrections for a selection of piston-cylinder cell assemblies. Mineralogical Magazine 66:10211028.
  • McKay G., Koizumi E., Mikouchi T., Le L., and Schwandt C. 2002. Crystallization of shergottite QUE 94201: An experimental study (abstract #2051). 33rd Lunar and Planetary Science Conference. CD-ROM.
  • McKay G., Le L., Schwandt C., Mikouchi T., Koizumi E., and Jones J. 2004. Yamato 980459: The most primitive shergottite? (abstract #2154). 35th Lunar and Planetary Science Conference. CD-ROM.
  • McSween H. Y., Jr. 1988. Crystallization of the ALHA77005 shergottite: How closed is a closed system? Proceedings, 19th Lunar and Planetary Science Conference. pp. 766767.
  • McSween H. Y. 1994. What we have learned about Mars from SNC meteorites. Meteoritics 29:757779.
  • McSween H. Y., Wyatt M. B., Gellert R., Bell J. F., Morris R. V., Herkenhoff K. E., Crumpler L. S., Milam K. A., Stockstill K. R., Tornabene L. L., Arvidson R. E., Bartlett P., Blaney D., Cabrol N. A., Christensen P. R., Clark B. C., Crisp J. A., Des Marais D. J., Economou T., Farmer J. D., Farrand W., Ghosh A., Golombek M., Gorevan S., Greeley R., Hamilton V. E., Johnson J. R., Joliff B. L., Klingelhöfer G., Knudson A. T., McLennan S., Ming D., Moersch J. E., Rieder R., Ruff S. W., Schröder C., de Souza P. A., Squyres S. W., Wänke H., Wang A., Yen A., and Zipfel J. 2006. Characterization and petrologic interpretation of olivine-rich basalts at Gusev Crater, Mars. Journal of Geophysical Research: Planets 111:E02S10.
  • Meyer C. 2004. Mars meteorite compendium. Houston, Texas: Nasa J.S.C.
  • Mikouchi T., Koizumi E., McKay G., Le L., and Schwandt C. 2001. Experimental crystallization of the QUE 94201 basaltic shergottite (abstract #2100). 32nd Lunar and Planetary Science Conference. CD-ROM.
  • Misawa K. 2004. The Yamato 980459 olivine-phyric shergottite consortium. Antarctic Meteorite Research 17:1.
  • Musselwhite D. S., Dalton H. A., Kiefer W. S., and Treiman A. H. 2006. Experimental petrology of the basaltic shergottite Yamato-980459: Implications for the thermal structure of the Martian mantle. Meteoritics & Planetary Science 41:12711290.
  • Mysen B. O. 1992. Iron and phosphorus in silicate melts. Chemical Geology 98:175202.
  • Peslier A. H., Hnatyshin D., Herd C. D. K., Walton E. L., Brandon A. D., Lapen T. J., and Shafer J. T. 2010. Crystallization, melt inclusion, and redox history of a Martian meteorite: Olivine-phyric shergottite Larkman Nunatak 06319. Geochimica et Cosmochimica Acta 74:45434576.
  • Roeder P. L. and Emslie R. F. 1970. Olivine-liquid equilibrium. Contributions to Mineralogy and Petrology 29:275289.
  • Sack R. O. and Ghiorso M. S. 1989. Importance of considerations of mixing properties in establishing an internally consistent thermodynamic database: Thermochemistry of minerals in the system Mg2SiO4-Fe2SiO4-SiO2. Contributions to Mineralogy and Petrology 102:4168.
  • Sack R. O. and Ghiorso M. S. 1991a. Chromian spinels as petrogenetic indicators: Thermodynamics and petrological applications. American Mineralogist 76:827847.
  • Sack R. O. and Ghiorso M. S. 1991b. An internally consistent model for the thermodynamic properties of Fe-Mg-titanomagnetite-aluminate spinels. Contributions to Mineralogy and Petrology 106:474505.
  • Sack R. O. and Ghiorso M. S. 1994a. Thermodynamics of multicomponent pyroxenes: I. Formulation of a general model. Contributions to Mineralogy and Petrology 116:277286.
  • Sack R. O. and Ghiorso M. S. 1994b. Thermodynamics of multicomponent pyroxenes: II. Phase relations in the quadrilateral. Contributions to Mineralogy and Petrology 116:287300.
  • Sack R. O. and Ghiorso M. S. 1994c. Thermodynamics of multicomponent pyroxenes: III. Calibration of Fe2+(Mg)−1, TiAl2(MgSi2)−1, TiFe23+(MgSi2)−1, AlFe3+(MgSi)−1, NaAl(CaMg)−1, Al2(MgSi)−1 and Ca(Mg)−1 exchange reactions between pyroxenes and silicate melts. Contributions to Mineralogy and Petrology 118:271296.
  • Schwandt C., Jones J. H., Mittlefehldt D. W., and Treiman A. H. 2001. The magma composition of EET 79001A: The first recount (abstract #1913). 32nd Lunar and Planetary Science Conference. CD-ROM.
  • Shafer J. T., Brandon A. D., Lapen T. J., Righter M., Beard B. L., and Peslier A. H. 2009. Lu-Hf age of Martian meteorite Larkman Nunatak 06319 (abstract #1803). 41st Lunar and Planetary Science Conference. CD-ROM.
  • Shih C.-Y., Nyquist L. E., Wiesmann H., Reese Y., and Misawa K. 2005. Rb-Sr and Sm-Nd dating of olivine phyric shergottite Yamato 980459: Petrogenesis of depleted shergottites. Antarctic Meteorite Research 18:4665.
  • Shirai N. and Ebihara M. 2004. Chemical characteristics of a Martian meteorite, Yamato 980459. Antarctic Meteorite Research 17:5567.
  • Stockstill K. R., McSween H. Y., and Bodnar R. J. 2005. Melt inclusions in augite of the Nakhla Martian meteorite: Evidence for basaltic parental melt. Meteoritics & Planetary Science 40:377396.
  • Stolper E. and McSween H. Y., Jr. 1979. Petrology and origin of the shergottite meteorites. Geochimica et Cosmochimica Acta 43:14751498.
  • Stolper E. M., Baker M. B., Fisk M., Gellert R., King P. L., McClennan S. M., Minitti M., Newcombe M., Schmidt M. E., Treiman A. H., and the MSL Science Team. 2013. The petrochemistry of Jake_M: A Martian mugearite (abstract #1685). 44th Lunar and Planetary Science Conference. CD-ROM.
  • Symes S. J. K., Borg L. E., Shearer C. K., and Irving A. J. 2008. The age of the Martian meteorite Northwest Africa 1195 and the differentiation history of the shergottites. Geochimica et Cosmochimica Acta 72:16961710.
  • Toplis M. J., Libourel G., and Carroll M. R. 1994. The role of phosphorus in crystallisation processes of basalt: An experimental study. Geochimica et Cosmochimica Acta 58:797810.
  • Treiman A. H. 1993. The parent magma of the Nakhla (SNC) meteorite, inferred from magmatic inclusions. Geochimica et Cosmochimica Acta 57:47534767.
  • Treiman A. H. and Sutton S. R. 1992. Petrogenesis of the Zagami meteorite: Inferences from synchrotron X-ray (SXRF) microprobe and electron microprobe analyses of pyroxenes. Geochimica et Cosmochimica Acta 56:40594074.
  • Usui T., McSween H. Y., Jr., and Floss C. 2008. Petrogenesis of olivine-phyric shergottite Yamato 980459, revisited. Geochimica et Cosmochimica Acta 72:17111730.
  • Usui T., Alexander C. M. O'D., Wang J., Simon J. I., and Jones J. H. 2012. Origin of water and mantle–crust interactions on Mars inferred from hydrogen isotopes and volatile element abundances of olivine-hosted melt inclusions of primitive shergottites. Earth and Planetary Science Letters 357–358:119129.
  • Wadhwa M. 2001. Redox state of Mars' upper mantle and crust from Eu anomalies in shergottite pyroxenes. Science 291:15271530.
  • Williams D. W. and Kennedy G. C. 1969. Melting curve of diopside to 50 kilobars. Journal of Geophysical Research 74:43594366.