SEARCH

SEARCH BY CITATION

References

  • Anand M., Williams C., Russell S., Jones G., James G., and Grady M. 2005. Petrology and geochemistry of nakhlite MIL 03346: A new Martian meteorite from Antarctica (abstract #1639). 36th Lunar and Planetary Science Conference. CD-ROM.
  • Arai S., Matsukage K., Isobe E., and Ysotskiy S. 1997. Concentration of incompatible elements in oceanic mantle: Effect of melt/wall interaction in stagnant or failed melt conduits within peridotite. Geochimica et Cosmochimica Acta 61:671675.
  • Baker D. R. 1992. The fidelity of melt inclusions as records of melt composition. Chemical Geology 98:1121.
  • Blichert-Toft J., Gleason J. D., Telouk P., and Albarede F. 1999. The Lu–Hf isotope geochemistry of shergottites and the evolution of the Martian mantle–crust system. Earth and Planetary Science Letters 173:2539.
  • Borg L. E. and Draper D. S. 2003. A petrogenetic model for the origin and compositional variation of the Martian basaltic meteorites. Meteoritics & Planetary Science 38:17131731.
  • Borg L. E., Nyquist L. E., Wiesmann H., Shih C.-Y., and Reese Y. 2003. The age of Dar al Gani 476 and the differentiation history of the Martian meteorites inferred from their radiogenic isotopic systematics. Geochimica et Cosmochimica Acta 67:35193536.
  • Bridges J. C. and Warren P. H. 2006. The SNC meteorites: Basaltic igneous processes on Mars. Journal of the Geological Society of London 163:229251.
  • Changela H. G. and Bridges J. C. 2010. Alteration assemblages in the nakhlites: Variation with depth on Mars. Meteoritics & Planetary Science 45:18471867.
  • Chen C. Y. and Frey F. A. 1983. Origin of Hawaiian tholeiite and alkalic basalt. Nature 302:785789.
  • Chen C. Y., Frey F. A., Garcia M. O., Dalrymple G. B., and Hart S. R. 1991. The tholeiite to alkalic basalt transition at Haleakala Volcano, Maui, Hawaii. Contributions to Mineralogy and Petrology 106:83200.
  • Danyushevsky L.V. and Plekhov P. 2011. Petrology: Integrated software for modeling crystallization processes. Geochemistry Geophysics Geosystems 12:Q07021.
  • Danyushevsky L. V., Della-Pasqua F. N., and Sokolov S. 2000. Re-equilibration of melt inclusions trapped by magnesian olivine phenocrysts from subduction-related magmas: Petrological implications. Contributions to Mineralogy and Petrology 138:6883.
  • Danyushevsky L. V., Sokolov S., and Falloon T. J. 2002a. Melt inclusions in olivine phenocrysts: Using diffusive re-equilibration to determine the cooling history of a crystal, with implications for the origin of olivine-phyric volcanic rocks. Journal of Petrology 43:16511671.
  • Danyushevsky L. V., McNeill A. W., and Sobolev A. V. 2002b. Experimental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas: An overview of techniques, advantages and complications. Chemical Geology 183:524.
  • Dasgupta R., Hirschmann M. M., and Smith N. D. 2007. Partial melting experiments of peridotite + CO2 at 3 GPa and genesis of alkalic ocean island basalts. Journal of Petrology 48:20932124.
  • Debaille V., Yin Q.-Z., Brandon A. D., and Jacobsen B. 2008. Martian mantle mineralogy investigated by the 176Lu–176Hf and147Sm–143Nd systematics of shergottites. Earth and Planetary Science Letters 269:186199.
  • Donaldson C. H. 1976. An experimental investigation of olivine morphology. Contributions to Mineralogy and Petrology 57:187213.
  • Dunn T. L., McSween H. Y. Jr., and Christensen P. R. 2007. Thermal emission spectra of terrestrial alkaline volcanic rocks: Applications to Martian remote sensing. Journal of Geophysical Research 112:E05001. doi:10.1029/2006JE002766.
  • Elkins-Tanton L. T. 2005. Continental magmatism caused by lithospheric delamination. In Plates, plumes, and paradigms, edited by Foulger G. R., Natland J. H., Presnall D. C., and Anderson D. L. Geological Society of America, Special Paper 388:449461.
  • Elkins-Tanton L. T. 2012. Magma oceans in the inner solar system. Annual Reviews of Earth and Planetary Science 40:113139.
  • Elkins-Tanton L. T. and Grove T. L. 2003. Evidence for deep melting of hydrous metasomatized mantle: Pliocene high-potassium magmas from the Sierra Nevadas. Journal of Geophysical Research 108:2350.
  • Elkins-Tanton L. T., Parmentier E. M., and Hess P. C. 2005. Possible formation of ancient crust on Mars through magma ocean processes. Journal of Geophysical Research 110:E12S01.
  • Eugster O., Busemann H., Lorenzetti S., and Terribilini D. 2002. Ejection ages from krypton-81-krypton-83 dating and pre-atmospheric sizes of Martian meteorites. Meteoritics & Planetary Science 37:13451360.
  • Eugster O., Herzog G. F., Marti K., and Caffee M. W. 2006. Irradiation records, cosmic-ray exposure ages, and transfer times of meteorites. In Meteorites and the early solar system II, edited by Lauretta D. S. and McSween H. Y. Jr. Tucson, Arizona: University of Arizona Press. pp. 829852.
  • Faure F. and Schiano P. 2005. Experimental investigation of equilibration conditions during forsterite growth and melt inclusion formation. Earth and Planetary Science Letters 236:882898.
  • Filiberto J. and Dasgupta R. 2011. Fe2+-Mg partitioning between olivine and basaltic melts: Applications to genesis of olivine-phyric shergottites and conditions of melting in the Martian interior. Earth and Planetary Science Letters 304:527537.
  • Filiberto J., Chin E., Day J. M. D., Franchi I. A., Greenwood R. C., Gross J., Penniston-Dorland S. C., Schwenzer S. P., and Treiman A. H. 2012. Geochemistry of intermediate olivine-phyric shergottite Northwest Africa 6234, with similarities to basaltic shergottite Northwest Africa 480 and olivine-phyric shergottite Northwest Africa 2990. Meteoritics & Planetary Science 47:12561273.
  • Frezzotti M.-L. 2001. Silicate-melt inclusions in magmatic rocks: Applications to petrology. Lithos 55:273299.
  • Gaetani G. A. and Watson E. B. 2000. Open system behavior of olivine-hosted melt inclusions. Earth and Planetary Science Letters 183:2741.
  • Gellert R., Rieder R., Bruckner J., Clark B. C., Dreibus G., Klingelhofer G., Lugmair G., Ming D. W., Wänke H., Yen A., Zipfel J., and Squyres S. W. 2006. Alpha particle X-ray spectrometer (APXS): Results from Gusev crater and calibration report. Journal of Geophysical Research 111:E02S05. doi:10.1029/2005JE002555.
  • Ghiorso M. S. and Sack R. O. 1995. Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contributions to Mineralogy and Petrology 119:197212.
  • Goodrich C. A., Fioretti A. M., and Van Orman J. A. 2009. Petrogenesis of augite-bearing ureilites Hughes 009 and FRO 90054/93008 inferred from melt inclusions in olivine, augite and orthopyroxene. Geochimica et Cosmochimica Acta 73:30553076.
  • Green D. H. 1970. A review of experimental evidence on the origin of basaltic and nephelinitic magmas. Physics of The Earth and Planetary Interiors 33:221235.
  • Greenough J. D. and Ya'acoby A. 2013. A comparative geochemical study of Mars and Earth basalt petrogenesis. Canadian Journal of Earth Sciences 50:7893.
  • Greshake A., Fritz J., and Stöffler D. 2004. Petrology and shock metamorphism of the olivine-phyric shergottite Yamato 980459: Evidence for a two-stage cooling and a single-stage ejection history. Geochimica et Cosmochimica Acta 68:23592377.
  • Gross J., Treiman A. H., and Filiberto J. 2011. Primitive olivine-phyric shergottite NWA 5789: Petrography, mineral chemistry and cooling history imply a magma similar to Yamato 980459. Meteoritics & Planetary Science 46:116133.
  • Hallis L. J. and Taylor G. J. 2011. Comparisons of the four Miller Range nakhlites, MIL 03346, 090030, 090032 and 090136: Textural and compositional observations of primary and secondary mineral assemblages. Meteoritics & Planetary Science 46:17871803.
  • Hammer J. E. 2009. Application of a textural geospeedometer to the late-stage magmatic history of MIL 03346. Meteoritics & Planetary Science 44:141154.
  • Harper C. L. Jr., Nyquist L. E., Bansal B., Wiesmann H., and Shih C. Y. 1995. Rapid accretion and early differentiation of Mars indicated by 142Nd/144Nd in SNC meteorites. Science 267:213217.
  • Harvey R. P. and McSween H. Y. Jr. 1992. The parent magma of the nakhlite meteorites: Clues from melt inclusions. Earth and Planetary Science Letters 111:467482.
  • Hirschmann M. M., Kogiso T., Baker M. B., and Stolper E. M. 2003. Alkalic magmas generated by partial melting of garnet pyroxenite. Geology 31:481484.
  • Huber L., Irving A. J., Maden C., and Wieler R. 2012. Noble gas cosmic ray exposure ages of four unusual Martian meteorites: Shergottites NWA 4797, NWA 5990, NWA 6342 and nakhlite NWA 5790 (abstract #1408). 43rd Lunar and Planetary Science Conference. CD-ROM.
  • Imae N. and Ikeda Y. 2007. Petrology of the Miller Range 03346 nakhlite in comparison with the Yamato-000593 nakhlite. Meteoritics & Planetary Science 42:171184.
  • Imae N. and Ikeda Y. 2008. Crystallization experiments of intercumulus melts for nakhlites under QFM±2 at 1 bar. Meteoritics & Planetary Science 43:12991320.
  • Irving A. J., Kuehner S. M., Herd C. D. K., Gellissen M., Korotev R. L., Puchtel I., Walker R. J., Lapen T. J., and Rumble D. III. 2010. Petrologic, elemental and multi-isotopic characterization of permafic olivine-phyric shergottite Northwest Africa 5789: A primitive magma derived from depleted Martian mantle (abstract #1547). 41st Lunar and Planetary Science Conference. CD-ROM.
  • Jambon A., Barrat J.-A., Bollinger C., Sautter V., Boudouma O., Greenwood R. C., Franchi I. A., and Badia D. 2010. Northwest Africa 5790. Top sequence of the nakhlite pile (abstract #1696). 41st Lunar and Planetary Science Conference. CD-ROM.
  • Jones J. H. 1989. Isotope relations among the shergottites, the nakhlites and Chassigny. Proceedings, 19th Lunar and Planetary Science Conference. pp. 465474.
  • Jones J. H. 2003. Constraints on the structure of the martian interior determined from the chemical and isotopic systematics of SNC meteorites. Meteoritics & Planetary Science 38:18071814.
  • Kaneda K., McKay G., and Le L. 1997a. Synthetic and natural Nakhla pyroxenes: Minor elements composition (abstract #1392). 28th Lunar and Planetary Science Conference. CD-ROM.
  • Kaneda K., McKay G., and Le L. 1997b. Comparison between synthetic and natural Nakhla pyroxenes: Minor elements compositions. Antarctic Meteorites XXII:8082.
  • Kaneda K., McKay G., and Le L. 1998. Synthetic and natural Nakhla pyroxenes: A close match at last (abstract #1620). 29th Lunar and Planetary Science Conference. CD-ROM.
  • Keshav S., Gudfinnsson G. H., Sena G., and Fei Y. 2004. High-pressure melting experiments on garnet clinopyroxenite and the alkalic to tholeiitic transition in ocean-island basalts. Earth and Planetary Science Letters 223:365379.
  • Kogiso T., Hirschmann M. M., and Frost D. J. 2003. High-pressure partial melting of garnet pyroxenite: Possible mafic lithologies in the source of ocean island basalts. Earth and Planetary Science Letters 216:603617.
  • Lambart S., Laporte D., and Schiano P. 2009. An experimental study of pyroxenite partial melts at 1 and 1.5 GPa: Implications for the major-element composition of mid-ocean ridge basalts. Earth and Planetary Science Letters 288:335347.
  • Leeman W. P., Vitaliano C. J., and Prinz M. 1976. Evolved lavas from the Snake River Plain: Craters of the Moon National Monument, Idaho. Contributions to Mineralogy and Petrology 56:3560.
  • Lindstrom D. J. 1999. Accuracy of rastered-beam analysis (RBA) of lunar breccia clasts by electron microprobe (abstract #1917). 30th Lunar and Planetary Science Conference. CD-ROM.
  • Longhi J. and Pan V. 1989. The parent magmas of the SNC meteorites. Proceedings, 19th Lunar and Planetary Science Conference. pp. 451464.
  • McKay G. 1993. Minor elements in Nakhla cumulus pyroxenes. Meteoritics 28:395396.
  • McKay G., Le L., and Wagstaff J. 1994. Synthetic and natural pyroxenes: Parent melt composition and REE partition coefficients (abstract). 25th Lunar and Planetary Science. p. 883.
  • McSween H. Y. Jr., Taylor G. J., and Wyatt M. B. 2009. Composition of the Martian crust. Science 324:736739.
  • Mezger K., Debaille V., and Kleine T. 2013. Core formation and mantle differentiation on Mars. Space Science Reviews 174:2748.
  • Mikouchi T. and Miyamoto M. 2002. Comparative cooling rates of nakhlites as inferred from iron-magnesium and calcium zoning of olivines (abstract #1343). 33rd Lunar and Planetary Science. CD-ROM.
  • Mikouchi T., Yamada I., and Miyamoto M. 2000. Symplectic exsolution in olivine from the Nakhla Martian meteorite. Meteoritics & Planetary Science 35:937942.
  • Mikouchi T., Koizumi E., Monkawa A., Ueda Y., and Miyamoto M. 2003. Mineralogical comparison of Y000593 with other nakhlites: Implications for relative burial depths of nakhlites (abstract #1883). 34th Lunar and Planetary Science Conference. CD-ROM.
  • Mikouchi T., Miyamoto M., Koizumi E., Makishima J., and McKay G. 2006. Relative burial depths of nakhlites: An update (abstract #1865). 37th Lunar and Planetary Science Conference. CD-ROM.
  • Mikouchi T., Makishima J., Kurihara V., Hoffmann H., and Miyamoto M. 2012. Relative burial depth of nakhlites revisited (abstract #2363). 43rd Lunar and Planetary Science Conference. CD-ROM.
  • Milman-Barris M. S., Beckett J. R., Baker M. B., Hofmann A. E., Zachary M., Crowley M. R., Vielzeuf D., and Stolper E. 2008. Zoning of phosphorus in igneous olivine. Contributions to Mineralogy and Petrology 155:739765.
  • Ming D. W., Gellert R., Morris R. V., Arvidson R. E., Brückner J., Clark B. C., Cohen B. A., d'Uston C., Economou T., Fleischer I., Klingelhöfer G., McCoy T. J., Mittlefehldt D. W., Schmidt M. E., Schröder C., Squyres S. W., Tréguier E., Yen A. S., and Zipfel J. 2008. Geochemical properties of rocks and soils in Gusev Crater, Mars: Results of the Alpha Particle X-Ray Spectrometer from Cumberland Ridge to Home Plate. Journal of Geophysical Research 113:E12. doi:10.1029/2008JE003195.
  • Misawa K. 2004. The Yamato 980459 olivine-phyric shergottite consortium. Antarctic Meteorite Research 17:112.
  • Mitchell J. N., Scoates J. S., Frost C. D., and Kolker A. 1996. The geochemical evolution of anorthosite residual magmas in the Laramie Anorthosite Complex, Wyoming. Journal of Petrology 37:637660.
  • Navon O. and Stolper E. M. 1987. Geochemical consequences of melt percolation: The upper mantle as a chromatographic column. The Journal of Geology 95:285307.
  • Nekvasil H., Filiberto J., McCubbin F. M., and Lindsley D. H. 2007. Alkalic parental magmas for the chassignites? Meteoritics & Planetary Science 42:979992.
  • Nyquist L. E., Bogard D. D., Shih C.-Y., Greshake A., Stöffler D., and Eugster O. 2001. Ages and geologic histories of Martian meteorites. In Chronology and evolution of Mars, edited by Kallenbach R., Geiss J., and Hartmann W. K. Dordrecht: Kluwer Academic Publishers. pp. 105164.
  • O'Reilly S. Y. and Griffin W. L. 2013. Mantle metasomatism. In Metasomatism and the chemical transformation of rock, edited by Harlov D. E. and Austrheim H. Berlin: Springer. pp. 471533.
  • Papike J. J., Burger P. V., Shearer C. K. Jr., and McCubbin F. M. 2013. Experimental and crystal chemical study of the basalt–eclogite transition in Mars and implications for martian magmatism. Geochimica et Cosmochimica Acta 104:358376.
  • Pilet S., Baker M. B., and Stolper E. M. 2008. Metasomatized lithosphere and the origin of alkaline lavas. Science 320:916919.
  • Presnall D., Dixon S. A., Dixon J. R., O'Donnell T., Brenner N., Schrock R., and Dycus D. 1978. Liquidus phase relations on the join diopside-forsterite-anorthite from 1 atm to 20 kbar: Their bearing on the generation and crystallization of basaltic magma. Contributions to Mineralogy and Petrology 66:203220.
  • Reiners P. W. 1998. Reactive melt transport in the mantle and geochemical signatures of mantle-derived magmas. Journal of Petrology 39:10391061.
  • Righter K., Yang H., Costin G., and Downs R. T. 2008. Oxygen fugacity in the Martian mantle controlled by carbon: New constraints from the nakhlite MIL 03346. Meteoritics & Planetary Science 43:17091723.
  • Roedder E. 1984. Fluid inclusions. Reviews in Mineralogy, vol. 12. Washington, D.C.: Mineralogical Society of America 644 pp.
  • Sautter V., Toplis M. J., Lorand J.-P., and Macri M. 2012. Melt inclusions in augite from the nakhlite meteorites: A reassessment of nakhlite parental melt and implications for petrogenesis. Meteoritics & Planetary Science 47:330344.
  • Schmidt M. E., King P. L., Gellert R., Elliott B., Thompson L., Berger J. A., Bridges J., Campbell J. L., Ehlmann B., Grotzinger J., Hurowitz J., Leshin L., Lewis K. W., McLennan S. M., Ming D. W., Perrett G., Pradler I., Stolper E. M., Squyres S. W., and Treiman A. H., and the MSL Science Team. 2013. APXS of first rocks encountered by Curiosity in Gale Crater: Geochemical diversity and volatile element (K and Zn) enrichment (abstract #1278). 44th Lunar and Planetary Science Conference. CD-ROM.
  • Sobolev A. V. and Danyushevsky L. V. 1994. Petrology and geochemistry of boninites from the north termination of the Tonga trench: Constraints on the generation conditions of primary high-Ca boninite magmas. Journal of Petrology 35:11831211.
  • Sonzogni Y. and Treiman A. H. 2013. Melt inclusions in the Tissint shergottite (martian) (abstract #1049). 44th Lunar and Planetary Science Conference. CD-ROM.
  • Sonzogni Y., Provost A., and Schiano P. 2011. Transcrystalline melt migration in clinopyroxene. Contributions to Mineralogy and Petrology 161:497510.
  • Squyres S. W., Aharonson O., Clark B. C., Cohen B. A., Crumpler L. S., de Souza P. A., Farrand W., Gellert R., Grant J., Grotzinger G., Haldemann A., Johnson J. R., Klingelhoefer G., Lewis J. S., Li R., McCoy T. J., McEwen A., McSween H. Y., Ming D., Moore J. M., Morris R. V., Parker T. J., Rice J. W., Ruff S. W., Schmidt M. E., Schroder C., Soderblom L., and Yen A. 2007. Pyroclastic activity at home plate in Gusev crater, Mars. Science 316:738742.
  • Stockstill K. R., McSween H. Y. Jr., and Bodnar R. J. 2005. Melt inclusions in augite of the Nakhla Martian meteorite: Evidence for basaltic parental melt. Meteoritics & Planetary Science 40:377396.
  • Stolper E. M., Baker M. B., Fisk M., Gellert R., King P., McLennan S. M., Minitti M., Newcombe M., Schmidt M. E., and Treiman A.H., and the MSL Science Team. 2013. The petrochemistry of Jake_M: A Martian mugearite (abstract #1685). 44th Lunar and Planetary Science Conference. CD-ROM.
  • Stopar J., Taylor G., and Norman M. 2007. Aqueous alteration in Nakhlite MIL 03346: LA-ICPMS and Raman spectroscopy. LPI Contribution 1353. Houston, Texas: Lunar and Planetary Institute.
  • Treiman A. H. 1986. The parental magma of the Nakhla achondrite: Ultrabasic volcanism on the shergottite parent body. Geochimica et Cosmochimica Acta 50:10611070.
  • Treiman A. H. 1990. Complex petrogenesis of the Nakhla (SNC) meteorite: Evidence from petrography and mineral chemistry. Proceedings, 20th Lunar and Planetary Science Conference. pp. 273280.
  • Treiman A. H. 1993. The parent magma of the Nakhla (SNC) meteorite, inferred from magmatic inclusions. Geochimica et Cosmochimica Acta 57:47534767.
  • Treiman A. H. 2003. Chemical compositions of martian basalts (shergottites): Some inferences on basalt formation, mantle metasomatism, and differentiation in Mars. Meteoritics & Planetary Science 38:18491864.
  • Treiman A. H. 2005. The nakhlite meteorites: Augite-rich igneous rocks from Mars. Chemie der Erde 65:203270.
  • Treiman A. H. and Goodrich C. A. 2001. A parent magma for the Nakhla martian meteorite: Reconciliation of estimates form 1-bar experiments, magmatic inclusion in olivine, and magmatic inclusions in augite (abstract #1107) 32nd Lunar and Planetary Science Conference.CD-ROM.
  • Treiman A. H., Drake M. J., Janssens M.-J., Wolf R., and Ebihara M. 1986. Core formation in the Earth and Shergottite parent body (SPB): Chemical evidence from basalts. Geochimica et Cosmochimica Acta 50:10711091.
  • Treiman A. H., Barrett R. A., and Gooding J. L. 1993. Preterrestrial aqueous alteration of the Lafayette (SNC) meteorite. Meteoritics 28:8697.
  • Varela M. E., Kurat G., and Clocchiatti R. 2001. Glass-bearing inclusions in Nakhla (SNC meteorite) augite: Heterogeneously trapped phases. Mineralogy and Petrology 71:155172.
  • Wänke H. and Dreibus G. 1988. Chemical composition and accretion history of terrestrial planets. Philosophical Transactions of the Royal Society of London A325:545557.
  • Warren P. H. 1997. The unequal host-phase density effect in electron probe defocused beam analysis: An easily correctable problem (abstract #1406). 28th Lunar and Planetary Science Conference. CD-ROM.
  • Warren P. H. and Wasson J. T. 1979. The origin of KREEP. Reviews of Geophysics and Space Physics 17:7388.
  • Watson E. B. 1976. Glass inclusions as samples of early magmatic liquid: Determinative method and application to a south Atlantic basalt. Journal of Volcanology and Geothermal Research 1:7384.
  • Whitaker M. L., Nekvasil H., Lindsley D. H., and Difrancesco N. J. 2007. The role of pressure in producing compositional diversity in intraplate basaltic magmas. Journal of Petrology 48:365393.