SEARCH

SEARCH BY CITATION

References

  • Amsden A. A, Ruppel H. M, and Hirt C. W. 1980. SALE: A simplified ALE computer program for fluid flow at all speeds. Los Alamos National Laboratories Report LA-8095:101p.
  • Barnes J. and Hut P. 1986. A hierarchical O(N log N) force-calculation algorithm. Nature 324:446449.
  • Benedix G. K., McCoy T. J., Keil K., and Love S. G. 2000. A petrologic study of the IAB iron meteorites: Constraints on the formation of the IAB-winonaite parent body. Meteoritics & Planetary Science 35:11271141.
  • Bennett M. E. III and McSween H. Y. Jr. 1996. Revised model calculations for the thermal histories of ordinary chondrite parent bodies. Meteoritics & Planetary Science 31:783792.
  • Benz W., Cameron A. G. W., and Melosh H. J. 1989. The origin of the Moon and the single-impact hypothesis III. Icarus 81:113131.
  • Bland P. A., Howard L. E., Prior D. J., Wheeler J., Hough R. M., and Dyl K. A. 2011. Earliest rock fabric formed in the solar system preserved in a chondrule rim. Nature Geoscience 4:244247.
  • Blum J. and Wurm G. 2008. The growth mechanisms of macroscopic bodies in protoplanetary disks. Annual Review of Astronomy and Astrophysics 46:2156.
  • Carslaw H. S. and Jäger J. C. 1959. Conduction of heat in solids (2nd ed.). Oxford: Clarendon Press.
  • Castillo-Rogez J. C. and McCord T. B. 2010. Ceres' evolution and present state constrained by shape data. Icarus 205:443459.
  • Collins G. S., Melosh H. J., and Ivanov B. A. 2004. Modeling damage and deformation in impact simulations. Meteoritics & Planetary Science 39:217231.
  • Collins G. S., Melosh H. J., and Wünnemann K. 2011a. Improvements to the ɛ-α porous compaction model for simulating impacts into high-porosity solar system objects. International Journal of Impact Engineering 38:434439.
  • Collins G. S., Davison T. M., and Ciesla F. J. 2011b. Numerical simulations of sub-catastrophic porous planetesimal collisions (abstract #1933). 42nd Lunar and Planetary Science Conference. CD-ROM.
  • Crawford D. A. 2010. Parallel n-body gravitational interaction in CTH for planetary defense and large impact simulations (abstract #155). Proceedings of the 11th Hypervelocity Impact, Symposium.
  • Cuzzi J. N., Hogan R. C., and Shariff K. 2008. Toward planetesimals: Dense chondrule clumps in the protoplanetary nebula. The Astrophysical Journal 687:14321447.
  • Davison T. M., Collins G. S., and Ciesla F. J. 2010. Numerical modelling of heating in porous planetesimal collisions. Icarus 208:468481.
  • Davison T. M., Ciesla F. J., and Collins G. S. 2012a. Post-impact thermal evolution of porous planetesimals. Geochimica et Cosmochimica Acta 95:252269.
  • Davison T. M., Ciesla F. J., and Collins G. S. 2012b. The effect of impact obliquity on porous planetesimal collisions (abstract #1235). 43rd Lunar and Planetary Science Conference. CD-ROM.
  • Davison T. M., O'Brien D. P., Ciesla F. J., and Collins G. S. 2013. The early impact histories of meteorite parent bodies. Meteoritics & Planetary Science 48:18941918. doi:10.1111/maps.12193.
  • Elkins-Tanton L. T., Weiss B. P., and Zuber M. T. 2011. Chondrites as samples of differentiated planetesimals. Earth and Planetary Science Letters 305:110.
  • Ghosh A. and McSween H. Y. 1998. A thermal model for the differentiation of asteroid 4 Vesta, based on radiogenic heating. Icarus 134:187206.
  • Ghosh A. and McSween H. Y. Jr. 1999. Temperature dependence of specific heat capacity and its effect on asteroid thermal models. Meteoritics & Planetary Science 34:121127.
  • Ghosh A., Weidenschilling S. J., McSween H. Y. Jr., Rubin A., and McSween H. Y. 2006. Asteroidal heating and thermal stratification of the asteroidal belt. In Meteorites and the early solar system II, edited by Lauretta D. S. Tucson, Arizona: University of Arizona Press. pp. 555566.
  • Grimm R. E. and McSween H. Y. 1993. Heliocentric zoning of the asteroid belt by aluminum-26 heating. Science 259:653655.
  • Harrison K. P. and Grimm R. E. 2010. Thermal constraints on the early history of the H-chondrite parent body reconsidered. Geochimica et Cosmochimica Acta 74:54105423.
  • Henke S., Gail H. P., Trieloff M., Schwarz W. H., and Kleine T. 2012. Thermal evolution and sintering of chondritic planetesimals. Astronomy & Astrophysics 537:A45.
  • Hevey P. J. and Sanders I. S. 2006. A model for planetesimal meltdown by 26Al and its implications for meteorite parent bodies. Meteoritics & Planetary Science 41:95106.
  • Ivanov B. A., Deniem D., and Neukum G. 1997. Implementation of dynamic strength models into 2D hydrocodes: Applications for atmospheric breakup and impact cratering. International Journal of Impact Engineering 20:411430.
  • Jacobsen B., Yin Q.-Z., Moynier F., Amelin Y., Krot A. N., Nagashima K., Hutcheon I. D., and Palme H. 2008. 26Al-26Mg and 207Pb-206Pb systematics of Allende CAIs: Canonical solar initial 26Al/27Al ratio reinstated. Earth and Planetary Science Letters 272:353364.
  • Keil K., Stoeffler D., Love S. G., and Scott E. R. D. 1997. Constraints on the role of impact heating and melting in asteroids. Meteoritics & Planetary Science 32:349363.
  • Kleine T., Touboul M., van Orman J. A., Bourdon B., Maden C., Mezger K., and Halliday A. N. 2008. Hf W thermochronometry: Closure temperature and constraints on the accretion and cooling history of the H chondrite parent body. Earth and Planetary Science Letters 270:106118.
  • Leinhardt Z. M. and Stewart S. T. 2009. Full numerical simulations of catastrophic small body collisions. Icarus 199:542559.
  • Love S. G. and Ahrens T. J. 1996. Catastrophic impacts on gravity dominated asteroids. Icarus 124:141155.
  • Melosh H. J. 1979. Acoustic fluidization: A new geologic process? Journal of Geophysical Research 84:75137520.
  • Melosh H. J. 1983. Acoustic fluidization. American Scientist 71:158165.
  • Melosh H. J. and Ivanov B. A. 1999. Impact crater collapse. Annual Review of Earth and Planetary Sciences 27:385415.
  • Melosh H. J., Ryan E. V., and Asphaug E. 1992. Dynamic fragmentation in impacts: Hydrocode simulation of laboratory impacts. Journal of Geophysical Research 97:14,73514,759.
  • O'Brien D. P. and Sykes M. V. 2011. The origin and evolution of the asteroid belt—Implications for Vesta and Ceres. Space Science Reviews 163:4161.
  • Ohnaka M. 1995. A shear failure strength law of rock in the brittle–plastic transition regime. Geophysical Research Letters 22:2528.
  • Opeil C. P., Consolmagno G. J., and Britt D. T. 2010. The thermal conductivity of meteorites: New measurements and analysis. Icarus 208:449454.
  • Pierazzo E., Artemieva N., Asphaug E., Baldwin E. C., Cazamias J., Coker R., Collins G. S., Crawford D. A., Davison T. M., Elbeshausen D., Holsapple K. A., Housen K. R., Korycansky D. G., and Wünnemann K. 2008. Validation of numerical codes for impact and explosion cratering: Impacts on strengthless and metal targets. Meteoritics & Planetary Science 43:19171938.
  • Qin L., Dauphas N., Wadhwa M., Masarik J., and Janney P. E. 2008. Rapid accretion and differentiation of iron meteorite parent bodies inferred from 182Hf 182W chronometry and thermal modeling. Earth and Planetary Science Letters 273:94104.
  • Rubin A. E. 1995. Petrologic evidence for collisional heating of chondritic asteroids. Icarus 113:156167.
  • Rubin A. E. 2003. Chromite-plagioclase assemblages as a new shock indicator; Implications for the shock and thermal histories of ordinary chondrites. Geochimica et Cosmochimica Acta 67:26952709.
  • Rubin A. E. 2004. Postshock annealing and postannealing shock in equilibrated ordinary chondrites: Implications for the thermal and shock histories of chondritic asteroids 1. Geochimica et Cosmochimica Acta 68:673689.
  • Rubin A. E. and Jones R. H. 2003. Spade: An H chondrite impact-melt breccia that experienced post-shock annealing. Meteoritics & Planetary Science 38:15071520.
  • Sahijpal S. and Gupta G. 2011. Did the carbonaceous chondrites evolve in the crustal regions of partially differentiated asteroids? Journal of Geophysical Research 116:E06004.
  • Sahijpal S., Soni P., and Gupta G. 2007. Numerical simulations of the differentiation of accreting planetesimals with 26Al and 60Fe as the heat sources. Meteoritics & Planetary Science 42:15291548.
  • Schulz T., Münker C., Palme H., and Mezger K. 2009. Hf-W chronometry of the IAB iron meteorite parent body. Earth and Planetary Science Letters 280:185193.
  • Schulz T., Münker C., Mezger K., and Palme H. 2010. Hf-W chronometry of primitive achondrites. Geochimica et Cosmochimica Acta 74:17061718.
  • Schulz T., Upadhyay D., Münker C., and Mezger K. 2012. Formation and exposure history of non-magmatic iron meteorites and winonaites: Clues from Sm and W isotopes. Geochimica et Cosmochimica Acta 85:200212.
  • Scott E. R. D., Krot T. V., Goldstein J. I., and Taylor G. J. 2011. Thermal and impact history of H chondrites: Was the onion shell structure punctured by impacts during metamorphism? Meteoritics & Planetary Science Supplement 74:5516.
  • Shoemaker E. M. 1962. Interpretation of lunar craters. In Physics and astronomy of the Moon, edited by Kopal Z. New York: Academic Press. pp. 283359.
  • Taylor G. J., Maggiore P., Scott E. R. D., Rubin A. E., and Keil K. 1987. Original structures, and fragmentation and reassembly histories of asteroids—Evidence from meteorites. Icarus 69:113.
  • Trieloff M., Jessberger E. K., Herrwerth I., Hopp J., Fiéni C., Ghélis M., Bourot-Denise M., and Pellas P. 2003. Structure and thermal history of the H-chondrite parent asteroid revealed by thermochronometry. Nature 422:502506.
  • Walsh K. J., Morbidelli A., Raymond S. N., O'Brien D. P., and Mandell A. M. 2011. A low mass Mars from Jupiter's early gas-driven migration. Nature 475:206209.
  • Weirich J. R., Wittmann A., Isachsen C. E., Rumble D., Swindle T. D., and Kring D. A. 2010. The Ar-Ar age and petrology of Miller Range 05029: Evidence for a large impact in the very early solar system. Meteoritics & Planetary Science 45:18681888.
  • Wittmann A., Swindle T. D., Cheek L. C., Frank E. A., and Kring D. A. 2010. Impact cratering on the H chondrite parent asteroid. Journal of Geophysical Research (Planets) 115:07009.
  • Wünnemann K., Collins G. S., and Melosh H. J. 2006. A strain-based porosity model for use in hydrocode simulations of impacts and implications for transient crater growth in porous targets. Icarus 180:514527.
  • Wünnemann K., Collins G. S., and Osinski G. R. 2008. Numerical modelling of impact melt production in porous rocks. Earth and Planetary Science Letters 269:530539.
  • Yomogida K. and Matsui T. 1984. Multiple parent bodies of ordinary chondrites. Earth and Planetary Science Letters 68:3442.