SEARCH

SEARCH BY CITATION

References

  • Abe M., Takagi Y., Kitazato K., Abe S., Hiroi T., Vilas F., Clark B. E., Abell P. A., Lederer S. M., Jarvis K. S., Nimura T., Ueda Y., and Fujiwara A. 2006. Near-infrared spectral results of asteroid Itokawa from the Hayabusa spacecraft. Science 312:13341338.
  • Binzel R. P., Rivikin A., Bus S., Sunshine J., and Burbine T. 2001. MUSES-C target asteroid (25143) 1998 SF36: A reddened ordinary chondrite. Meteoritics & Planetary Science 36:11671172.
  • Brearley A. J. and Jones R. H. 1998. Chondritic meteorites. In Planetary materials, edited by Papike J. J. Reviews in Mineralogy, vol. 36. Washington, D.C.: Mineralogical Society of America. pp. 3-13-398.
  • Chen M. and El Goresy A. 2000. The nature of maskelynite in shocked meteorites: Not diaplestic glass but a glass quenched from shocked-induced dense melt at high pressures. Earth and Planetary Science Letters 179:489502.
  • Cherniak D. J. 2010. Cation diffusion in feldspars. In Diffusion in minerals and melts, edited by Zhang Y. and Cherniak D. J. Reviews in Mineralogy and Geochemistry, vol. 72. Washington, D.C.: Mineralogical Society of America. pp. 691733.
  • Dunn T. L., Cressey G., McSween H. Y. Jr., and McCoy T. J. 2010. Analysis of ordinary chondrites using powder X-ray diffraction: 1. Modal mineral abundances. Meteoritics & Planetary Science 45:123134.
  • Ebihara M., Sekimoto S., Shirai N., Hamajima Y., Yamamoto M., Kumagai K., Oura Y., Ireland T. R., Kitajima F., Nagao K., Nakamura T., Naraoka H., Noguchi T., Okazaki R., Tsuchiyama A., Uesugi M., Yurimoto H., Zolensky M. E., Abe M., Fujimura A., Mukai T., and Yada T. 2011. Neutron activation analysis of a particle returned from asteroid Itokawa. Science 333:11191121.
  • Ebihara M., Shirai N., Sekimoto S., Nakamura T., Tsuchiyama A., Matsuno J., Matsumoto T., Abe M., Fujimura A., Mukai T., Uesugi M., and Yada T. Forthcoming. Chemical composition of tiny grains recovered from an asteroid Itokawa: An INAA study. Meteoritics & Planetary Science.
  • Fuhrman M. L. and Lindsley D. H. 1988. Ternary feldspar modeling and thermometry. American Mineralogist 73:201215.
  • Huss G. R., Rubin A. E., and Grossman J. N. 2006. Thermal metamorphism in chondrites. In Meteorites and the early solar system II, edited by Lauretta D. S. and McSween H. Y. Jr. Tucson, Arizona: The University of Arizona Press. pp. 567586.
  • Jarosewich E. 1990. Chemical analysis of meteorites: A compilation of stony and iron meteorite analysis. Meteoritics 25:323337.
  • Jones R. H. 1997. Equilibration of pyroxenes in type 4-6 LL chondrites (abstract #1217). 28th Lunar and Planetary Science Conference. CD-ROM.
  • Jones R. H. and Brearley A. J. 2011. Exsolution in feldspar in the Tuxtuac (LL5) chondrite: A new perspective on cooling rates for metamorphosed chondrites. 74th Annual Meteoritical Society Meeting (abstract #5475).
  • Kasper R. B. 1975. Cation and oxygen diffusion in albite. Ph.D. thesis, Brown University, Providence, Rhode Island.
  • Kawaguchi J., Aida S., and Morita H. 2006. Hayabusa, Detailed guidance and navigation operations during descents and touchdowns. AIAA/AAS Astrodynamics Specialist Conference and Exhibit. AIAA 2006-6536:116.
  • Kovach H. A. and Jones R. H. 2010. Feldspar in type 4-6 ordinary chondrites: Metamorphic processing on the H and LL chondrite parent bodies. Meteoritics & Planetary Science 45:246264.
  • Kroll H., Evangelakakis C., and Vall G. 1993. Two-feldspar geothermometry: A review and revision for slowly cooled rocks. Contributions to Mineralogy and Petrology 114:510518.
  • Lindsley D. H. 1983. Pyroxene geothermometry. American Mineralogist 68:477493.
  • Liu M. and Yund R. A. 1992. NaSi-CaAl interdiffusion in plagioclase. American Mineralogist 77:275283.
  • McCoy T. J., Scott E. R. D., Jones R. H., Keil K., and Taylor G. J. 1991. Composition of chondrule silicates in LL3-5 chondrites and implications for their nebular history and parent body metamorphism. Geochimica et Cosmochimica Acta 55:601619.
  • McSween H. Y. and Patchen A. D. 1989. Pyroxene thermobarometry in LL-group chondrites and implications for parent body metamorphism. Meteoritics 24:219226.
  • Miyamoto H., Yano H., Scheeres D. J., Abe S., Barnouin-Jha O., Cheng A. F., Demura H., Gaskell R. W., Hirata N., Ishiguro M., Michikami T., Nakamura A. M., Nakamura R., Saito J., and Sasaki S. 2007. Regolith migration and sorting on asteroid Itokawa. Science 316:10111014.
  • Nagao K., Okazaki R., Nakamura T., Miura Y. N., Osawa T., Bajo K., Matsuda S., Ebihara M., Ireland T. R., Kitajima F., Naraoka H., Noguchi T., Tsuchiyama A., Uesugi M., Yurimoto H., Zolensky M., Shirai K., Abe M., Yada T., Ishibashi Y., Fujimura A., Mukai T., Ueno M., Okada T., Yoshikawa M., and Kawaguchi J. 2011. Irradiation history of Itokawa regolith material deduced from noble gases in the Hayabusa samples. Science 333:11281131.
  • Nakamura T., Noguchi T., Tanaka M., Zolensky M. E., Kimura M., Tsuchiyama A., Nakato A., Ogami T., Ishida H., Uesugi M., Yada T., Shirai S., Fujimura A., Okazaki R., Sandford S. A., Ishibashi Y., Abe M., Okada T., Ueno M., Mukai T., Yoshikawa M., and Kawaguchi J. 2011. Itokawa dust particles: A direct link between S-type asteroids and ordinary chondrites. Science 333:11131116.
  • Nittler L. R., Starr R. D., Lev L., McCoy T. J., Burbine T. H., Reedy R. C., Trombka J. I., Gorenstein P., Squyres S. W., Boynton W. V., Mcclanahan T. P., Bhangoo J. S., Clark P. E., Murphy M. E., and Killen R. 2001. X-ray fluorescence measurements of the surface elemental composition of asteroid 433 Eros. Meteoritics and Planetary Science 36:16731695.
  • Noguchi T., Nakamura T., Kimura M., Zolensky M. E., Tanaka M., Hashimoto T., Konno M., Nakato A., Ogami T., Fujimura A., Abe M., Yada T., Mukai T., Ueno M., Okada T., Shirai K., Ishibashi Y., and Okazaki R. 2011. Incipient space weathering observed on the surface of Itokawa dust particles. Science 333:11211125.
  • Rubin A. E. 1992. A shock-metamorphic model for silicate darkening and compositionally variable plagioclase in CK and ordinary chondrites. Geochimica et Cosmochimica Acta 56:17051714.
  • Rubin A. E. 2004. Postshock annealing and postannealing shock in equilibrated ordinary chondrites: Implications for the thermal and shock histories of chondritic asteroids. Geochimica et Cosmochimica Acta 68:673689.
  • Russell S. S., Zipfel J., Folco L., Jones R., Grady M. M., McCoy T., and Grossman J. N. 2003. The Meteoritical Bulletin, No. 87, 2003 July. Meteoritics & Planetary Science 87:189248.
  • Stöffler D., Keil K., and Scott E. R. D. 1991. Shock metamorphism of ordinary chondrites. Geochimica et Cosmochimica Acta 55:38453867.
  • Tanaka M., Nakamura T., Noguchi T., Nakato A., Ishida H., Yada T., Shirai K., Fujimura A., Ishibashi Y., Abe M., Okada T., Ueno M., and Mukai T. 2013. Crystallization temperature determination of Itokawa particles by plagioclase thermometry with X-ray diffraction data obtained by a high-resolution synchrotron Gandolfi camera. Meteoritics & Planetary Science, doi:10.1111/maps.12215.
  • Tsuchiyama A., Uesugi M., Matsushima T., Michikami T., Kadono T., Nakamura T., Uesugi K., Nakano T., Sandford S. A., Noguchi R., Matsumoto T., Matsuno J., Nagano T., Imai Y., Takeuchi A., Suzuki Y., Ogami T., Katagiri J., Ebihara M., Ireland T. R., Kitajima F., Nagao K., Naraoka H., Noguchi T., Okazaki R., Yurimoto H., Zolensky M. E., Mukai T., Abe M., Yada T., Fujimura A., Yoshikawa M., and Kawaguchi J. 2011. Three-dimensional structure of Hayabusa samples: Origin and evolution of Itokawa regolith. Science 333:11211125.
  • Tsuchiyama A., Uesugi M., Uesugi K., Nakano T., Noguchi R., Matsumoto T., Matsuno J., Nagano T., Imai Y., Shimada A., Takeuchi A., Suzuki Y., Nakamura T., Noguchi T., Abe M., Yada T., and Fujimura A. 2013. Three-dimensional microstructure of samples recovered from asteroid 25143 Itokawa: Comparison with LL5 and LL6 chondrite particles. Meteoritics & Planetary Science, doi:10.1111/maps.12177.
  • Van Schmus W. R. and Wood J. A. 1967. A chemical-petrologic classification for the chondritic meteorites. Geochimica et Cosmochimica Acta 31:747765.
  • Wakita S., Nakamura T., Ikeda T., and Yurimoto H. 2013. Thermal modeling for a parent body of Itokawa. Meteoritics & Planetary Science, doi:10.1111/maps.12174.
  • Yada T., Abe M., Okada T., Uesugi M., Karouji Y., Ishibashi Y., Yakame S., Shirai K., Nakamura T., Noguchi T., Okazaki R., and Fujimura A. 2012. Mineral ratios of Itokawa particles recovered from the Hayabusa sample catcher (abstract #5245). 75th Annual Meeting of the Meteoritical Society. Meteoritics & Planetary Science 47.
  • Yano H., Kubota T., Miyamoto H., Okada T., Scheeres D., Takagi Y., Yoshida K., Abe M., Abe S., Barnouin-Jha O., Fujiwara A., Hasegawa S., Hashimoto T., Ishiguro M., Kato M., Kawaguchi J., Mukai T., Saito J., Sasaki S., and Yoshikawa M. 2006. Touchdown of the Hayabusa spacecraft at the Muses Sea on Itokawa. Science 312:13501353.
  • Yund R. A. 1986. Interdiffusion of NaSi-CaAl in peristerite. Physics and Chemistry of Minerals 13:1116.
  • Yurimoto H., Abe K., Abe M., Ebihara M., Fujimura A., Hashiguchi M., Hashizume K., Ireland T. R., Itoh S., Katayama J., Kato C., Kawaguchi J., Kawasaki N., Kitajima F., Kobayashi S., Meike T., Mukai T., Nagao K., Nakamura T., Naraoka H., Noguchi T., Okazaki R., Park C., Sakamoto N., Seto Y., Takei M., Tsuchiyama A., Uesugi M., Wakaki S., Yada T., Yamamoto K., Yoshikawa M., and Zolensky M. E. 2011. Oxygen isotopic compositions of asteroidal materials returned from Itokawa by the Hayabusa mission. Science 333:11161119.