Get access

Expression patterns and organization of the hsp70 genes correlate with thermotolerance in two congener endemic amphipod species (Eulimnogammarus cyaneus and E. verrucosus) from Lake Baikal

Authors


Correspondence: Daria S. Bedulina, Fax: +7 (3952) 201219; E-mail: daria.bedulina@gmail.com

Abstract

We studied various aspects of heat-shock response with special emphasis on the expression of heat-shock protein 70 (hsp70) genes at various levels in two congener species of littoral endemic amphipods (Eulimnogammarus cyaneus and E. verrucosus) from Lake Baikal which show striking differences in their vertical distribution and thermal tolerance. Although both the species studied demonstrate high constitutive levels of Hsp70, the thermotolerant E. cyaneus exhibited a 5-fold higher basal level of Hsp70 proteins under normal physiological conditions (7 °C) and significantly lower induction of Hsp70 after temperature elevation compared with the more thermosensitive E. verrucosus. We isolated the hsp70 genes from both species and analysed their sequences. Two isoforms of the cytosolic Hsp70/Hsc70 proteins were detected in both species under normal physiological conditions and encoded by two distinct hsp/hsc70 family members. While both Hsp70 isoforms were synthesized without heat shock, only one of them was induced by temperature elevation. The observed differences in the Hsp70 expression patterns, including the dynamics of Hsp70 synthesis and threshold of induction, suggest that the increased thermotolerance in E. cyaneus (compared with E. verrucosus) is associated with a complex structural and functional rearrangement of the hsp70 gene family and favoured the involvement of Hsp70 in adaptation to fluctuating thermal conditions. This study provides insights into the molecular mechanisms underlying the thermal adaptation of Baikal amphipods and represents the first report describing the structure and function of the hsp70 genes of endemic Baikal species dwelling in thermally contrasting habitats.

Get access to the full text of this article

Ancillary