SEARCH

SEARCH BY CITATION

References

  • Abe, Y., Umemura, S., Sugimoto, K., Hirawa, N., Kato, Y., Yokoyama, N., et al. (1995) Effect of green tea rich in gamma-aminobutyric acid on blood pressure of Dahl salt-sensitive rats. Am J Hypertens 8: 7479.
  • Adeghate, E., and Ponery, A.S. (2002) GABA in the endocrine pancreas: cellular localization and function in normal and diabetic rats. Tissue Cell 34: 16.
  • Aiso, T., Murata, M., and Gamou, S. (2011) Transcription of an antisense RNA of a gadE mRNA is regulated by GadE, the central activator of the acid resistance system in Escherichia coli. Genes Cells 16: 670680.
  • Andrell, J., Hicks, M.G., Palmer, T., Carpenter, E.P., Iwata, S., and Maher, M.J. (2009) Crystal structure of the acid-induced arginine decarboxylase from Escherichia coli: reversible decamer assembly controls enzyme activity. Biochemistry 48: 39153927.
  • Audic, S., Lescot, M., Claverie, J.M., and Scholz, H.C. (2009) Brucella microti: the genome sequence of an emerging pathogen. BMC Genomics 10: 352.
  • Bearson, S., Bearson, B., and Foster, J.W. (1997) Acid stress responses in enterobacteria. FEMS Microbiol Lett 147: 173180.
  • Bertoldi, M., Gonsalvi, M., Contestabile, R., and Voltattorni, C.B. (2002) Mutation of tyrosine 332 to phenylalanine converts dopa decarboxylase into a decarboxylation-dependent oxidative deaminase. J Biol Chem 277: 3635736362.
  • Bhagat, N., and Virdi, J.S. (2009) Molecular and biochemical characterization of urease and survival of Yersinia enterocolitica biovar 1A in acidic pH in vitro. BMC Microbiol 9: 262.
  • Bhagwat, A.A., and Bhagwat, M. (2004) Comparative analysis of transcriptional regulatory elements of glutamate-dependent acid-resistance systems of Shigella flexneri and Escherichia coli O157:H7. FEMS Microbiol Lett 234: 139147.
  • Buchrieser, C., Rusniok, C., Kunst, F., Cossart, P., and Glaser, P. (2003) Comparison of the genome sequences of Listeria monocytogenes and Listeria innocua: clues for evolution and pathogenicity. FEMS Immunol Med Microbiol 35: 207213.
  • Burton, N.A., Johnson, M.D., Antczak, P., Robinson, A., and Lund, P.A. (2010) Novel aspects of the acid response network of E. coli K-12 are revealed by a study of transcriptional dynamics. J Mol Biol 401: 726742.
  • Capitani, G., De Biase, D., Aurizi, C., Gut, H., Bossa, F., and Grutter, M.G. (2003a) Crystal structure and functional analysis of Escherichia coli glutamate decarboxylase. EMBO J 22: 40274037.
  • Capitani, G., Tramonti, A., Bossa, F., Grutter, M.G., and De Biase, D. (2003b) The critical structural role of a highly conserved histidine residue in group II amino acid decarboxylases. FEBS Lett 554: 4144.
  • Castanie-Cornet, M.P., Penfound, T.A., Smith, D., Elliott, J.F., and Foster, J.W. (1999) Control of acid resistance in Escherichia coli. J Bacteriol 181: 35253535.
  • Castanie-Cornet, M.P., Treffandier, H., Francez-Charlot, A., Gutierrez, C., and Cam, K. (2007) The glutamate-dependent acid resistance system in Escherichia coli: essential and dual role of the His-Asp phosphorelay RcsCDB/AF. Microbiology 153: 238246.
  • Cotter, P.D., and Hill, C. (2003) Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiol Mol Biol Rev 67: 429453.
  • Cotter, P.D., Gahan, C.G., and Hill, C. (2001a) A glutamate decarboxylase system protects Listeria monocytogenes in gastric fluid. Mol Microbiol 40: 465475.
  • Cotter, P.D., O'Reilly, K., and Hill, C. (2001b) Role of the glutamate decarboxylase acid resistance system in the survival of Listeria monocytogenes LO28 in low pH foods. J Food Prot 64: 13621368.
  • Cotter, P.D., Ryan, S., Gahan, C.G., and Hill, C. (2005) Presence of GadD1 glutamate decarboxylase in selected Listeria monocytogenes strains is associated with an ability to grow at low pH. Appl Environ Microbiol 71: 28322839.
  • Cozzani, I., Misuri, A., and Santoni, C. (1970) Purification and general properties of glutamate decarboxylase from Clostridium perfringens. Biochem J 118: 135141.
  • Cozzani, I., Barsacchi, R., Dibenedetto, G., Saracchi, L., and Falcone, G. (1975) Regulation of breakdown and synthesis of L-glutamate decarboxylase in Clostridium perfringens. J Bacteriol 123: 11151123.
  • De Biase, D., Tramonti, A., John, R.A., and Bossa, F. (1996) Isolation, overexpression, and biochemical characterization of the two isoforms of glutamic acid decarboxylase from Escherichia coli. Protein Expr Purif 8: 430438.
  • De Biase, D., Tramonti, A., Bossa, F., and Visca, P. (1999) The response to stationary-phase stress conditions in Escherichia coli: role and regulation of the glutamic acid decarboxylase system. Mol Microbiol 32: 11981211.
  • Di Cagno, R., Mazzacane, F., Rizzello, C.G., De Angelis, M., Giuliani, G., Meloni, M., et al. (2010) Synthesis of gamma-aminobutyric acid (GABA) by Lactobacillus plantarum DSM19463: functional grape must beverage and dermatological applications. Appl Microbiol Biotechnol 86: 731741.
  • Dutyshev, D.I., Darii, E.L., Fomenkova, N.P., Pechik, I.V., Polyakov, K.M., Nikonov, S.V., et al. (2005) Structure of Escherichia coli glutamate decarboxylase (GADalpha) in complex with glutarate at 2.05 angstroms resolution. Acta Crystallogr D Biol Crystallogr 61: 230235.
  • Fan, E., Huang, J., Hu, S., Mei, L., and Yu, K. (2012) Cloning, sequencing and expression of a glutamate decarboxylase gene from the GABA-producing strain Lactobacillus brevis CGMCC 1306. Ann Microbiol 62: 689698.
  • Fang, Y., Jayaram, H., Shane, T., Kolmakova-Partensky, L., Wu, F., Williams, C., et al. (2009) Structure of a prokaryotic virtual proton pump at 3.2 A resolution. Nature 460: 10401043.
  • Fenalti, G., Law, R.H., Buckle, A.M., Langendorf, C., Tuck, K., Rosado, C.J., et al. (2007) GABA production by glutamic acid decarboxylase is regulated by a dynamic catalytic loop. Nat Struct Mol Biol 14: 280286.
  • Fonda, M. (1972) Glutamate decarboxylase. Substrate specificity and inhibition by carboxylic acids. Biochemistry 11: 13041309.
  • Foster, J.W. (1999) When protons attack: microbial strategies of acid adaptation. Curr Opin Microbiol 2: 170174.
  • Foster, J.W. (2001) Acid stress responses of Salmonella and E. coli: survival mechanisms, regulation, and implications for pathogenesis. J Microbiol 39: 8994.
  • Foster, J.W. (2004) Escherichia coli acid resistance: tales of an amateur acidophile. Nat Rev Microbiol 2: 898907.
  • Gale, E.F. (1940) The production of amines by bacteria: the decarboxylation of amino-acids by strains of Bacterium coli. Biochem J 34: 392413.
  • Gale, E.F. (1946) The bacterial amino acid decarboxylases. Adv Enzymol 6: 131.
  • Gao, X., Lu, F., Zhou, L., Dang, S., Sun, L., Li, X., et al. (2009) Structure and mechanism of an amino acid antiporter. Science 324: 15651568.
  • Gao, X., Zhou, L., Jiao, X., Lu, F., Yan, C., Zeng, X., et al. (2010) Mechanism of substrate recognition and transport by an amino acid antiporter. Nature 463: 828832.
  • Giannella, R.A., Broitman, S.A., and Zamcheck, N. (1972) Gastric acid barrier to ingested microorganisms in man: studies in vivo and in vitro. Gut 13: 251256.
  • Gobbetti, M., Cagno, R.D., and De Angelis, M. (2010) Functional microorganisms for functional food quality. Crit Rev Food Sci Nutr 50: 716727.
  • Gorden, J., and Small, P.L. (1993) Acid resistance in enteric bacteria. Infect Immun 61: 364367.
  • Gulder, T.A., and Moore, B.S. (2010) Salinosporamide natural products: potent 20 S proteasome inhibitors as promising cancer chemotherapeutics. Angew Chem Int Ed Engl 49: 93469367.
  • Gut, H., Pennacchietti, E., John, R.A., Bossa, F., Capitani, G., De Biase, D., and Grutter, M.G. (2006) Escherichia coli acid resistance: pH-sensing, activation by chloride and autoinhibition in GadB. EMBO J 25: 26432651.
  • Gut, H., Dominici, P., Pilati, S., Astegno, A., Petoukhov, M.V., Svergun, D.I., et al. (2009) A common structural basis for pH- and calmodulin-mediated regulation in plant glutamate decarboxylase. J Mol Biol 392: 334351.
  • Han, D., Kim, H.Y., Lee, H.J., Shim, I., and Hahm, D.H. (2007) Wound healing activity of gamma-aminobutyric acid (GABA) in rats. J Microbiol Biotechnol 17: 16611669.
  • Hayakawa, K., Kimura, M., Kasaha, K., Matsumoto, K., Sansawa, H., and Yamori, Y. (2004) Effect of a gamma-aminobutyric acid-enriched dairy product on the blood pressure of spontaneously hypertensive and normotensive Wistar-Kyoto rats. Br J Nutr 92: 411417.
  • Hayes, E.T., Wilks, J.C., Sanfilippo, P., Yohannes, E., Tate, D.P., Jones, B.D., et al. (2006) Oxygen limitation modulates pH regulation of catabolism and hydrogenases, multidrug transporters, and envelope composition in Escherichia coli K-12. BMC Microbiol 6: 89.
  • Hersh, B.M., Farooq, F.T., Barstad, D.N., Blankenhorn, D.L., and Slonczewski, J.L. (1996) A glutamate-dependent acid resistance gene in Escherichia coli. J Bacteriol 178: 39783981.
  • Higuchi, T., Hayashi, H., and Abe, K. (1997) Exchange of glutamate and gamma-aminobutyrate in a Lactobacillus strain. J Bacteriol 179: 33623364.
  • Hiraga, K., Ueno, Y., and Oda, K. (2008) Glutamate decarboxylase from Lactobacillus brevis: activation by ammonium sulfate. Biosci Biotechnol Biochem 72: 12991306.
  • Hommais, F., Krin, E., Laurent-Winter, C., Soutourina, O., Malpertuy, A., Le Caer, J.P., et al. (2001) Large-scale monitoring of pleiotropic regulation of gene expression by the prokaryotic nucleoid-associated protein, H-NS. Mol Microbiol 40: 2036.
  • Hong, W., Jiao, W., Hu, J., Zhang, J., Liu, C., Fu, X., et al. (2005) Periplasmic protein HdeA exhibits chaperone-like activity exclusively within stomach pH range by transforming into disordered conformation. J Biol Chem 280: 2702927034.
  • Inoue, K., Shirai, T., Ochiai, H., Kasao, M., Hayakawa, K., Kimura, M., and Sansawa, H. (2003) Blood-pressure-lowering effect of a novel fermented milk containing gamma-aminobutyric acid (GABA) in mild hypertensives. Eur J Clin Nutr 57: 490495.
  • Ito, K., Tanaka, K., Nishibe, Y., Hasegawa, J., and Ueno, H. (2007) GABA-synthesizing enzyme, GAD67, from dermal fibroblasts: evidence for a new skin function. Biochim Biophys Acta 1770: 291296.
  • Itou, J., Eguchi, Y., and Utsumi, R. (2009) Molecular mechanism of transcriptional cascade initiated by the EvgS/EvgA system in Escherichia coli K-12. Biosci Biotechnol Biochem 73: 870878.
  • Iyer, R., Iverson, T.M., Accardi, A., and Miller, C. (2002) A biological role for prokaryotic ClC chloride channels. Nature 419: 715718.
  • Jimenez de Bagues, M.P., Ouahrani-Bettache, S., Quintana, J.F., Mitjana, O., Hanna, N., Bessoles, S., et al. (2010) The new species Brucella microti replicates in macrophages and causes death in murine models of infection. J Infect Dis 202: 310.
  • Kanjee, U., Gutsche, I., Alexopoulos, E., Zhao, B., El Bakkouri, M., Thibault, G., et al. (2011) Linkage between the bacterial acid stress and stringent responses: the structure of the inducible lysine decarboxylase. EMBO J 30: 931944.
  • Karatzas, K.A., Brennan, O., Heavin, S., Morrissey, J., and O'Byrne, C.P. (2010) Intracellular accumulation of high levels of gamma-aminobutyrate by Listeria monocytogenes 10403S in response to low pH: uncoupling of gamma-aminobutyrate synthesis from efflux in a chemically defined medium. Appl Environ Microbiol 76: 35293537.
  • Karatzas, K.A., Suur, L., and O'Byrne, C.P. (2012) Characterization of the intracellular glutamate decarboxylase system: analysis of its function, transcription, and role in the acid resistance of various strains of Listeria monocytogenes. Appl Environ Microbiol 78: 35713579.
  • Kern, R., Malki, A., Abdallah, J., Tagourti, J., and Richarme, G. (2007) Escherichia coli HdeB is an acid stress chaperone. J Bacteriol 189: 603610.
  • Kobayashi, A., Hirakawa, H., Hirata, T., Nishino, K., and Yamaguchi, A. (2006) Growth phase-dependent expression of drug exporters in Escherichia coli and its contribution to drug tolerance. J Bacteriol 188: 56935703.
  • Komatsuzaki, N., Nakamura, T., Kimura, T., and Shima, J. (2008) Characterization of glutamate decarboxylase from a high gamma-aminobutyric acid (GABA)-producer, Lactobacillus paracasei. Biosci Biotechnol Biochem 72: 278285.
  • de Koning-Ward, T.F., and Robins-Browne, R.M. (1997) A novel mechanism of urease regulation in Yersinia enterocolitica. FEMS Microbiol Lett 147: 221226.
  • Kowalczyk, L., Ratera, M., Paladino, A., Bartoccioni, P., Errasti-Murugarren, E., Valencia, E., et al. (2011) Molecular basis of substrate-induced permeation by an amino acid antiporter. Proc Natl Acad Sci USA 108: 39353940.
  • Lammens, T.M., De Biase, D., Franssen, M.C.R., Scott, E.L., and Sanders, J.P.M. (2009) The application of glutamic acid α-decarboxylase for the valorization of glutamic acid. Green Chem 11: 15621567.
  • Lammens, T.M., Potting, J., Sanders, J.P., and De Boer, I.J. (2011) Environmental comparison of biobased chemicals from glutamic acid with their petrochemical equivalents. Environ Sci Technol 45: 85218528.
  • Leung, K.Y., Siame, B.A., Tenkink, B.J., Noort, R.J., and Mok, Y.K. (2012) Edwardsiella tarda – virulence mechanisms of an emerging gastroenteritis pathogen. Microbes Infect 14: 2634.
  • Li, H., and Cao, Y. (2010) Lactic acid bacterial cell factories for gamma-aminobutyric acid. Amino Acids 39: 11071116.
  • Lin, J., Lee, I.S., Frey, J., Slonczewski, J.L., and Foster, J.W. (1995) Comparative analysis of extreme acid survival in Salmonella typhimurium, Shigella flexneri, and Escherichia coli. J Bacteriol 177: 40974104.
  • Lin, J., Smith, M.P., Chapin, K.C., Baik, H.S., Bennett, G.N., and Foster, J.W. (1996) Mechanisms of acid resistance in enterohemorrhagic Escherichia coli. Appl Environ Microbiol 62: 30943100.
  • Lin, Y.L., and Gao, J. (2010) Internal proton transfer in the external pyridoxal 5′-phosphate Schiff base in dopa decarboxylase. Biochemistry 49: 8494.
  • Ma, D., Lu, P., Yan, C., Fan, C., Yin, P., Wang, J., and Shi, Y. (2012) Structure and mechanism of a glutamate-GABA antiporter. Nature 483: 632636.
  • Ma, Z., Gong, S., Richard, H., Tucker, D.L., Conway, T., and Foster, J.W. (2003) GadE (YhiE) activates glutamate decarboxylase-dependent acid resistance in Escherichia coli K-12. Mol Microbiol 49: 13091320.
  • Mantzourani, M., Fenlon, M., and Beighton, D. (2009a) Association between Bifidobacteriaceae and the clinical severity of root caries lesions. Oral Microbiol Immunol 24: 3237.
  • Mantzourani, M., Gilbert, S.C., Sulong, H.N., Sheehy, E.C., Tank, S., Fenlon, M., and Beighton, D. (2009b) The isolation of bifidobacteria from occlusal carious lesions in children and adults. Caries Res 43: 308313.
  • Mates, A.K., Sayed, A.K., and Foster, J.W. (2007) Products of the Escherichia coli acid fitness island attenuate metabolite stress at extremely low pH and mediate a cell density-dependent acid resistance. J Bacteriol 189: 27592768.
  • Merrell, D.S., and Camilli, A. (2002) Acid tolerance of gastrointestinal pathogens. Curr Opin Microbiol 5: 5155.
  • Momany, C., Ghosh, R., and Hackert, M.L. (1995a) Structural motifs for pyridoxal-5′-phosphate binding in decarboxylases: an analysis based on the crystal structure of the Lactobacillus 30a ornithine decarboxylase. Protein Sci 4: 849854.
  • Momany, C., Ernst, S., Ghosh, R., Chang, N.L., and Hackert, M.L. (1995b) Crystallographic structure of a PLP-dependent ornithine decarboxylase from Lactobacillus 30a to 3.0 A resolution. J Mol Biol 252: 643655.
  • Nakajo, K., Takahashi, N., and Beighton, D. (2010) Resistance to acidic environments of caries-associated bacteria: Bifidobacterium dentium and Bifidobacterium longum. Caries Res 44: 431437.
  • Nguyen, T.M., and Sparks-Thissen, R.L. (2012) The inner membrane protein, YhiM, is necessary for Escherichia coli (E. coli) survival in acidic conditions. Arch Microbiol 194: 637641.
  • Nishino, K., Senda, Y., and Yamaguchi, A. (2008) The AraC-family regulator GadX enhances multidrug resistance in Escherichia coli by activating expression of mdtEF multidrug efflux genes. J Infect Chemother 14: 2329.
  • Occhialini, A., Jiménez de Bagüés, M.P., Saadeh, B., Bastianelli, D., Hanna, N., De Biase, D., and Köhler, S. (2012) The glutamic acid decarboxylase system of the new species Brucella microti contributes to its acid resistance and to oral infection of mice. J Infect Dis doi:10.1093/infdis/jis522
  • O'Leary, M.H., and Brummund, W., Jr (1974) pH jump studies of glutamate decarboxylase. Evidence for a pH-dependent conformation change. J Biol Chem 249: 37373745.
  • Oh, S.H., Soh, J.R., and Cha, Y.S. (2003) Germinated brown rice extract shows a nutraceutical effect in the recovery of chronic alcohol-related symptoms. J Med Food 6: 115121.
  • Opdyke, J.A., Kang, J.G., and Storz, G. (2004) GadY, a small-RNA regulator of acid response genes in Escherichia coli. J Bacteriol 186: 66986705.
  • Oshima, T., Ishikawa, S., Kurokawa, K., Aiba, H., and Ogasawara, N. (2006) Escherichia coli histone-like protein H-NS preferentially binds to horizontally acquired DNA in association with RNA polymerase. DNA Res 13: 141153.
  • Park, G., and Diez-Gonzalez, F. (2004) A novel glutamate-dependent acid resistance among strains belonging to the Proteeae tribe of Enterobacteriaceae. FEMS Microbiol Lett 237: 303309.
  • Park, K.B., and Oh, S.H. (2007a) Cloning, sequencing and expression of a novel glutamate decarboxylase gene from a newly isolated lactic acid bacterium, Lactobacillus brevis OPK-3. Bioresour Technol 98: 312319.
  • Park, K.B., and Oh, S.H. (2007b) Production of yogurt with enhanced levels of gamma-aminobutyric acid and valuable nutrients using lactic acid bacteria and germinated soybean extract. Bioresour Technol 98: 16751679.
  • Pennacchietti, E., Lammens, T.M., Capitani, G., Franssen, M.C., John, R.A., Bossa, F., and De Biase, D. (2009) Mutation of His465 alters the pH-dependent spectroscopic properties of Escherichia coli glutamate decarboxylase and broadens the range of its activity toward more alkaline pH. J Biol Chem 284: 3158731596.
  • Richard, H., and Foster, J.W. (2004) Escherichia coli glutamate- and arginine-dependent acid resistance systems increase internal pH and reverse transmembrane potential. J Bacteriol 186: 60326041.
  • Sanders, J.W., Leenhouts, K., Burghoorn, J., Brands, J.R., Venema, G., and Kok, J. (1998) A chloride-inducible acid resistance mechanism in Lactococcus lactis and its regulation. Mol Microbiol 27: 299310.
  • Sandmeier, E., Hale, T.I., and Christen, P. (1994) Multiple evolutionary origin of pyridoxal-5′-phosphate-dependent amino acid decarboxylases. Eur J Biochem 221: 9971002.
  • Schlenker, C., and Surawicz, C.M. (2009) Emerging infections of the gastrointestinal tract. Best Pract Res Clin Gastroenterol 23: 8999.
  • Shepherd, M., Sanguinetti, G., Cook, G.M., and Poole, R.K. (2010) Compensations for diminished terminal oxidase activity in Escherichia coli: cytochrome bd-II-mediated respiration and glutamate metabolism. J Biol Chem 285: 1846418472.
  • Shukuya, R., and Schwert, G.W. (1960a) Glutamic acid decarboxylase. I. Isolation procedures and properties of the enzyme. J Biol Chem 235: 16491652.
  • Shukuya, R., and Schwert, G.W. (1960b) Glutamic acid decarboxylase. III. The inactivation of the enzyme at low temperatures. J Biol Chem 235: 16581661.
  • Shukuya, R., and Schwert, G.W. (1960c) Glutamic acid decarboxylase. II. The spectrum of the enzyme. J Biol Chem 235: 16531657.
  • Siragusa, S., De Angelis, M., Di Cagno, R., Rizzello, C.G., Coda, R., and Gobbetti, M. (2007) Synthesis of gamma-aminobutyric acid by lactic acid bacteria isolated from a variety of Italian cheeses. Appl Environ Microbiol 73: 72837290.
  • Small, P.L., and Waterman, S.R. (1998) Acid stress, anaerobiosis and gadCB: lessons from Lactococcus lactis and Escherichia coli. Trends Microbiol 6: 214216.
  • Smith, D.K., Kassam, T., Singh, B., and Elliott, J.F. (1992) Escherichia coli has two homologous glutamate decarboxylase genes that map to distinct loci. J Bacteriol 174: 58205826.
  • Srinivasa Rao, P.S., Lim, T.M., and Leung, K.Y. (2003) Functional genomics approach to the identification of virulence genes involved in Edwardsiella tarda pathogenesis. Infect Immun 71: 13431351.
  • Su, M.S., Schlicht, S., and Ganzle, M.G. (2011) Contribution of glutamate decarboxylase in Lactobacillus reuteri to acid resistance and persistence in sourdough fermentation. Microb Cell Fact 10 (Suppl. 1): S8.
  • Sukhareva, B.S. (1986) Amino acid decarboxylases. In Pyridoxal Phosphate: Chemical, Biochemical and Medical Aspects. Dolphin, D. , Poulson, R. , and Avramovic, O. (eds). New York: Wiley Interscience, Part B, pp. 325353.
  • Szklarczyk, D., Franceschini, A., Kuhn, M., Simonovic, M., Roth, A., Minguez, P., et al. (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39 (Database issue): D561D568.
  • Tennant, S.M., Hartland, E.L., Phumoonna, T., Lyras, D., Rood, J.I., Robins-Browne, R.M., and van Driel, I.R. (2008) Influence of gastric acid on susceptibility to infection with ingested bacterial pathogens. Infect Immun 76: 639645.
  • Tramonti, A., De Biase, D., Giartosio, A., Bossa, F., and John, R.A. (1998) The roles of His-167 and His-275 in the reaction catalyzed by glutamate decarboxylase from Escherichia coli. J Biol Chem 273: 19391945.
  • Tramonti, A., Visca, P., De Canio, M., Falconi, M., and De Biase, D. (2002a) Functional characterization and regulation of gadX, a gene encoding an AraC/XylS-like transcriptional activator of the Escherichia coli glutamic acid decarboxylase system. J Bacteriol 184: 26032613.
  • Tramonti, A., John, R.A., Bossa, F., and De Biase, D. (2002b) Contribution of Lys276 to the conformational flexibility of the active site of glutamate decarboxylase from Escherichia coli. Eur J Biochem 269: 49134920.
  • Tramonti, A., De Canio, M., Delany, I., Scarlato, V., and De Biase, D. (2006) Mechanisms of transcription activation exerted by GadX and GadW at the gadA and gadBC gene promoters of the glutamate-based acid resistance system in Escherichia coli. J Bacteriol 188: 81188127.
  • Tramonti, A., De Canio, M., and De Biase, D. (2008) GadX/GadW-dependent regulation of the Escherichia coli acid fitness island: transcriptional control at the gadY-gadW divergent promoters and identification of four novel 42 bp GadX/GadW-specific binding sites. Mol Microbiol 70: 965982.
  • Tucker, D.L., Tucker, N., and Conway, T. (2002) Gene expression profiling of the pH response in Escherichia coli. J Bacteriol 184: 65516558.
  • Tucker, D.L., Tucker, N., Ma, Z., Foster, J.W., Miranda, R.L., Cohen, P.S., and Conway, T. (2003) Genes of the GadX-GadW regulon in Escherichia coli. J Bacteriol 185: 31903201.
  • Ventura, M., Turroni, F., Zomer, A., Foroni, E., Giubellini, V., Bottacini, F., et al. (2009) The Bifidobacterium dentium Bd1 genome sequence reflects its genetic adaptation to the human oral cavity. PLoS Genet 5: e1000785.
  • Waterman, S.R., and Small, P.L. (1996) Identification of sigma S-dependent genes associated with the stationary-phase acid-resistance phenotype of Shigella flexneri. Mol Microbiol 21: 925940.
  • Waterman, S.R., and Small, P.L. (2003) The glutamate-dependent acid resistance system of Escherichia coli and Shigella flexneri is inhibited in vitro by L-trans-pyrrolidine-2,4-dicarboxylic acid. FEMS Microbiol Lett 224: 119125.
  • Weber, H., Polen, T., Heuveling, J., Wendisch, V.F., and Hengge, R. (2005) Genome-wide analysis of the general stress response network in Escherichia coli: sigmaS-dependent genes, promoters, and sigma factor selectivity. J Bacteriol 187: 15911603.
  • Wong, C.G., Bottiglieri, T., and Snead, O.C., 3rd (2003) GABA, gamma-hydroxybutyric acid, and neurological disease. Ann Neurol 54 (Suppl. 6): S312.
  • Zhang, H., Yao, H.Y., and Chen, F. (2006) Accumulation of gamma-aminobutyric acid in rice germ using protease. Biosci Biotechnol Biochem 70: 11601165.