SEARCH

SEARCH BY CITATION

References

  • Alphey, M.S., Leonard, G.A., Gourley, D.G., Tetaud, E., Fairlamb, A.H., and Hunter, W.N. (1999) The high resolution crystal structure of recombinant Crithidia fasciculata tryparedoxin-I. J Biol Chem 274: 2561325622.
  • Antelmann, H., and Helmann, J.D. (2011) Thiol-based redox switches and gene regulation. Antioxid Redox Signal 14: 10491063.
  • Aslund, F., Berndt, K.D., and Holmgren, A. (1997) Redox potentials of glutaredoxins and other thiol-disulfide oxidoreductases of the thioredoxin superfamily determined by direct protein-protein redox equilibria. J Biol Chem 272: 3078030786.
  • Brunger, A.T., Adams, P.D., Clore, G.M., DeLano, W.L., Gros, P., Grosse-Kunstleve, R.W., et al. (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54: 905921.
  • Bryk, R., Lima, C.D., Erdjument-Bromage, H., Tempst, P., and Nathan, C. (2002) Metabolic enzymes of mycobacteria linked to antioxidant defense by a thioredoxin-like protein. Science 295: 10731077.
  • Buchmeier, N., and Fahey, R.C. (2006) The mshA gene encoding the glycosyltransferase of mycothiol biosynthesis is essential in Mycobacterium tuberculosis Erdman. FEMS Microbiol Lett 264: 7479.
  • Buchmeier, N.A., Newton, G.L., and Fahey, R.C. (2006) A mycothiol synthase mutant of Mycobacterium tuberculosis has an altered thiol-disulfide content and limited tolerance to stress. J Bacteriol 188: 62456252.
  • Bulaj, G., Kortemme, T., and Goldenberg, D.P. (1998) Ionization-reactivity relationships for cysteine thiols in polypeptides. Biochemistry 37: 89658972.
  • Bushweller, J.H., Aslund, F., Wuthrich, K., and Holmgren, A. (1992) Structural and functional characterization of the mutant Escherichia coli glutaredoxin (C14—-S) and its mixed disulfide with glutathione. Biochemistry 31: 92889293.
  • Chai, Y.C., Ashraf, S.S., Rokutan, K., Johnston, R.B., and Thomas, J.A. (1994) S-thiolation of individual human neutrophil proteins including actin by stimulation of the respiratory burst: evidence against a role for glutathione disulfide. Arch Biochem Biophys 310: 273281.
  • Chi, B.K., Gronau, K., Mader, U., Hessling, B., Becher, D., and Antelmann, H. (2011) S-bacillithiolation protects against hypochlorite stress in Bacillus subtilis as revealed by transcriptomics and redox proteomics. Mol Cell Proteomics 10: M111009506.
  • Collet, J.F., and Messens, J. (2010) Structure, function, and mechanism of thioredoxin proteins. Antioxid Redox Signal 13: 12051216.
  • Collinson, E.J., Wheeler, G.L., Garrido, E.O., Avery, A.M., Avery, S.V., and Grant, C.M. (2002) The yeast glutaredoxins are active as glutathione peroxidases. J Biol Chem 277: 1671216717.
  • Delaglio, F., Grzesiek, S., Vuister, G.W., Zhu, G., Pfeifer, J., and Bax, A. (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6: 277293.
  • Dyson, H.J., Tennant, L.L., and Holmgren, A. (1991) Proton-transfer effects in the active-site region of Escherichia coli thioredoxin using two-dimensional 1H NMR. Biochemistry 30: 42624268.
  • Ehrt, S., and Schnappinger, D. (2009) Mycobacterial survival strategies in the phagosome: defence against host stresses. Cell Microbiol 11: 11701178.
  • Eklund, H., Cambillau, C., Sjoberg, B.M., Holmgren, A., Jornvall, H., Hoog, J.O., and Branden, C.I. (1984) Conformational and functional similarities between glutaredoxin and thioredoxins. EMBO J 3: 14431449.
  • Fernandes, A.P., and Holmgren, A. (2004) Glutaredoxins: glutathione-dependent redox enzymes with functions far beyond a simple thioredoxin backup system. Antioxid Redox Signal 6: 6374.
  • Foloppe, N., and Nilsson, L. (2004) The glutaredoxin -C-P-Y-C- motif: influence of peripheral residues. Structure 12: 289300.
  • Foloppe, N., and Nilsson, L. (2007) Stabilization of the catalytic thiolate in a mammalian glutaredoxin: structure, dynamics and electrostatics of reduced pig glutaredoxin and its mutants. J Mol Biol 372: 798816.
  • Foloppe, N., Sagemark, J., Nordstrand, K., Berndt, K.D., and Nilsson, L. (2001) Structure, dynamics and electrostatics of the active site of glutaredoxin 3 from Escherichia coli: comparison with functionally related proteins. J Mol Biol 310: 449470.
  • Gallogly, M.M., Starke, D.W., and Mieyal, J.J. (2009) Mechanistic and kinetic details of catalysis of thiol-disulfide exchange by glutaredoxins and potential mechanisms of regulation. Antioxid Redox Signal 11: 10591081.
  • Gleason, F.K. (1992) Mutation of conserved residues in Escherichia coli thioredoxin: effects on stability and function. Protein Sci 1: 609616.
  • Goldberg, D.E., Siliciano, R.F., and Jacobs, W.R., Jr (2012) Outwitting evolution: fighting drug-resistant TB, malaria, and HIV. Cell 148: 12711283.
  • Guntert, P., Mumenthaler, C., and Wuthrich, K. (1997) Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol 273: 283298.
  • Hansen, R.E., Ostergaard, H., and Winther, J.R. (2005) Increasing the reactivity of an artificial dithiol-disulfide pair through modification of the electrostatic milieu. Biochemistry 44: 58995906.
  • Heras, B., Kurz, M., Jarrott, R., Shouldice, S.R., Frei, P., Robin, G., et al. (2008) Staphylococcus aureus DsbA does not have a destabilizing disulfide. A new paradigm for bacterial oxidative folding. J Biol Chem 283: 42614271.
  • Herrmann, T., Guntert, P., and Wuthrich, K. (2002) Protein NMR structure determination with automated NOE-identification in the NOESY spectra using the new software ATNOS. J Biomol NMR 24: 171189.
  • Holmgren, A. (1976) Hydrogen donor system for Escherichia coli ribonucleoside-diphosphate reductase dependent upon glutathione. Proc Natl Acad Sci USA 73: 22752279.
  • Holmgren, A. (1979) Glutathione-dependent synthesis of deoxyribonucleotides. Purification and characterization of glutaredoxin from Escherichia coli. J Biol Chem 254: 36643671.
  • Holmgren, A., Soderberg, B.O., Eklund, H., and Branden, C.I. (1975) Three-dimensional structure of Escherichia coli thioredoxin-S2 to 2.8 Å resolution. Proc Natl Acad Sci USA 72: 23052309.
  • Jackett, P.S., Aber, V.R., and Lowrie, D.B. (1978) Virulence of Mycobacterium tuberculosis and susceptibility to peroxidative killing systems. J Gen Microbiol 107: 273278.
  • Jensen, K.S., Hansen, R.E., and Winther, J.R. (2008) Kinetic and thermodynamic aspects of cellular thiol-disulfide redox regulation. Antioxid Redox Signal 11: 10471058.
  • Jensen, K.S., Winther, J.R., and Teilum, K. (2011) Millisecond dynamics in glutaredoxin during catalytic turnover is dependent on substrate binding and absent in the resting states. J Am Chem Soc 133: 30343042.
  • Johnson, B.A. (2004) Using NMRView to visualize and analyze the NMR spectra of macromolecules. Methods Mol Biol 278: 313352.
  • Kallis, G.B., and Holmgren, A. (1980) Differential reactivity of the functional sulfhydryl groups of cysteine-32 and cysteine-35 present in the reduced form of thioredoxin from Escherichia coli. J Biol Chem 255: 1026110265.
  • Kim, M.-S., Dufour, Y.S., Yoo, J.S., Cho, Y.-B., Park, J.-H., Nam, G.-B., et al. (2012) Conservation of thiol-oxidative stress responses regulated by SigR orthologues in actinomycetes. Mol Microbiol 85: 326344.
  • Kortemme, T., and Creighton, T.E. (1995) Ionisation of cysteine residues at the termini of model alpha-helical peptides. Relevance to unusual thiol pKa values in proteins of the thioredoxin family. J Mol Biol 253: 799812.
  • Lee, J.W., Soonsanga, S., and Helmann, J.D. (2007) A complex thiolate switch regulates the Bacillus subtilis organic peroxide sensor OhrR. Proc Natl Acad Sci USA 104: 87438748.
  • Lennon, B.W., Williams, C.H., Jr, and Ludwig, M.L. (2000) Twists in catalysis: alternating conformations of Escherichia coli thioredoxin reductase. Science 289: 11901194.
  • Li, M., Yang, Q., Zhang, L., Li, H., Cui, Y., and Wu, Q. (2007) Identification of novel targets of cyanobacterial glutaredoxin. Arch Biochem Biophys 458: 220228.
  • Li, S., Peterson, N.A., Kim, M.Y., Kim, C.Y., Hung, L.W., Yu, M., et al. (2005) Crystal Structure of AhpE from Mycobacterium tuberculosis, a 1-Cys peroxiredoxin. J Mol Biol 346: 10351046.
  • Li, Y., and He, Z.-G. (2012) The mycobacterial LysR-type regulator OxyS responds to oxidative stress and negatively regulates expression of the catalase-peroxidase gene. PLoS ONE 7: e30186.
  • Lillig, C.H., Berndt, C., and Holmgren, A. (2008) Glutaredoxin systems. Biochim Biophys Acta 1780: 13041317.
  • Manca, C., Paul, S., Barry, C.E., 3rd, Freedman, V.H., and Kaplan, G. (1999) Mycobacterium tuberculosis catalase and peroxidase activities and resistance to oxidative killing in human monocytes in vitro. Infect Immun 67: 7479.
  • Martin, J.L. (1995) Thioredoxin – a fold for all reasons. Structure 3: 245250.
  • Martin, J.L., Bardwell, J.C., and Kuriyan, J. (1993) Crystal structure of the DsbA protein required for disulphide bond formation in vivo. Nature 365: 464468.
  • Mieyal, J.J., Gallogly, M.M., Qanungo, S., Sabens, E.A., and Shelton, M.D. (2008) Molecular mechanisms and clinical implications of reversible protein S-glutathionylation. Antioxid Redox Signal 10: 19411988.
  • Nathan, C., and Shiloh, M.U. (2000) Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci USA 97: 88418848.
  • Nederveen, A.J., Doreleijers, J.F., Vranken, W., Miller, Z., Spronk, C.A., Nabuurs, S.B., et al. (2005) RECOORD: a recalculated coordinate database of 500+ proteins from the PDB using restraints from the BioMagResBank. Proteins 59: 662672.
  • Newton, G.L., Bewley, C.A., Dwyer, T.J., Horn, R., Aharonowitz, Y., Cohen, G., et al. (1995) The structure of U17 isolated from Streptomyces clavuligerus and its properties as an antioxidant thiol. Eur J Biochem 230: 821825.
  • Newton, G.L., Arnold, K., Price, M.S., Sherrill, C., Delcardayre, S.B., Aharonowitz, Y., et al. (1996) Distribution of thiols in microorganisms: mycothiol is a major thiol in most actinomycetes. J Bacteriol 178: 19901995.
  • Newton, G.L., Unson, M.D., Anderberg, S.J., Aguilera, J.A., Oh, N.N., delCardayre, S.B., et al. (1999) Characterization of Mycobacterium smegmatis mutants defective in 1-d-myo-inosityl-2-amino-2-deoxy-alpha-d-glucopyranoside and mycothiol biosynthesis. Biochem Biophys Res Commun 255: 239244.
  • Newton, G.L., Koledin, T., Gorovitz, B., Rawat, M., Fahey, R.C., and Av-Gay, Y. (2003) The glycosyltransferase gene encoding the enzyme catalyzing the first step of mycothiol biosynthesis (mshA). J Bacteriol 185: 34763479.
  • Newton, G.L., Buchmeier, N., and Fahey, R.C. (2008) Biosynthesis and functions of mycothiol, the unique protective thiol of Actinobacteria. Microbiol Mol Biol Rev 72: 471494.
  • Nordstrand, K., Slund, F., Holmgren, A., Otting, G., and Berndt, K.D. (1999) NMR structure of Escherichia coli glutaredoxin 3-glutathione mixed disulfide complex: implications for the enzymatic mechanism. J Mol Biol 286: 541552.
  • Ordóñez, E., Van Belle, K., Roos, G., De Galan, S., Letek, M., Gil, J.A., et al. (2009) Arsenate reductase, mycothiol, and mycoredoxin concert thiol/disulfide exchange. J Biol Chem 284: 1510715116.
  • Patel, M.P., and Blanchard, J.S. (1999) Expression, purification, and characterization of Mycobacterium tuberculosis mycothione reductase. Biochemistry 38: 1182711833.
  • Piddington, D.L., Fang, F.C., Laessig, T., Cooper, A.M., Orme, I.M., and Buchmeier, N.A. (2001) Cu,Zn superoxide dismutase of Mycobacterium tuberculosis contributes to survival in activated macrophages that are generating an oxidative burst. Infect Immun 69: 49804987.
  • Rawat, M., Newton, G.L., Ko, M., Martinez, G.J., Fahey, R.C., and Av-Gay, Y. (2002) Mycothiol-deficient Mycobacterium smegmatis mutants are hypersensitive to alkylating agents, free radicals, and antibiotics. Antimicrob Agents Chemother 46: 33483355.
  • Rokutan, K., Thomas, J.A., and Johnston, R.B. (1991) Phagocytosis and stimulation of the respiratory burst by phorbol diester initiate S-thiolation of specific proteins in macrophages. J Immunol 147: 260264.
  • Roos, G., and Messens, J. (2011) Protein sulfenic acid formation: from cellular damage to redox regulation. Free Radic Biol Med 51: 314326.
  • Roos, G., Garcia-Pino, A., Van Belle, K., Brosens, E., Wahni, K., Vandenbussche, G., et al. (2007) The conserved active site proline determines the reducing power of Staphylococcus aureus thioredoxin. J Mol Biol 368: 800811.
  • Roos, G., Foloppe, N., and Messens, J. (2012) Understanding the pKa of redox cysteines: the key role of hydrogen bonding. Antioxid Redox Signal doi:10.1089/ars.2012.4521
  • Rouhier, N., Villarejo, A., Srivastava, M., Gelhaye, E., Keech, O., Droux, M., et al. (2005) Identification of plant glutaredoxin targets. Antioxid Redox Signal 7: 919929.
  • Sattler, M., Schleucher, J., and Griesinger, C. (1999) Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog Nucl Magn Reson Spectrosc 34: 93158.
  • Seres, T., Ravichandran, V., Moriguchi, T., Rokutan, K., Thomas, J.A., and Johnston, R.B. (1996) Protein S-thiolation and dethiolation during the respiratory burst in human monocytes. A reversible post-translational modification with potential for buffering the effects of oxidant stress. J Immunol 156: 19731980.
  • Shaked, Z., Szajewski, R.P., and Whitesides, G.M. (1980) Rates of thiol-disulfide interchange reactions involving proteins and kinetic measurements of thiol pKa values. Biochemistry 19: 41564166.
  • Shen, Y., Delaglio, F., Cornilescu, G., and Bax, A. (2009) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44: 213223.
  • Shiloh, M.U., and DiGiuseppe Champion, P.A. (2010) To catch a killer. What can mycobacterial models teach us about Mycobacterium tuberculosis pathogenesis? Curr Opin Microbiol 13: 8692.
  • Stehr, M., and Lindqvist, Y. (2004) NrdH-redoxin of Corynebacterium ammoniagenes forms a domain-swapped dimer. Proteins 55: 613619.
  • Stehr, M., Schneider, G., Aslund, F., Holmgren, A., and Lindqvist, Y. (2001) Structural basis for the thioredoxin-like activity profile of the glutaredoxin-like NrdH-redoxin from Escherichia coli. J Biol Chem 276: 3583635841.
  • Thurlkill, R.L., Grimsley, G.R., Scholtz, J.M., and Pace, C.N. (2006) pK values of the ionizable groups of proteins. Protein Sci 15: 12141218.
  • Trivedi, A., Singh, N., Bhat, S.A., Gupta, P., and Kumar, A. (2012) Redox biology of tuberculosis pathogenesis. Adv Microb Physiol 60: 263324.
  • Vilchèze, C., Av-Gay, Y., Attarian, R., Liu, Z., Hazbón, M.H., Colangeli, R., et al. (2008) Mycothiol biosynthesis is essential for ethionamide susceptibility in Mycobacterium tuberculosis. Mol Microbiol 69: 13161329.
  • Vranken, W.F., Boucher, W., Stevens, T.J., Fogh, R.H., Pajon, A., Llinas, M., et al. (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59: 687696.
  • Wolff, S.P. (1994) Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for measurement of hydroperoxides. Methods Enzymol 233: 182189.
  • Xia, B., Vlamis-Gardikas, A., Holmgren, A., Wright, P.E., and Dyson, H.J. (2001) Solution structure of Escherichia coli glutaredoxin-2 shows similarity to mammalian glutathione-S-transferases. J Mol Biol 310: 907918.
  • Yamazaki, T., Forman-Kay, J., and Kay, L. (1993) Two-dimensional NMR experiments for correlating 13Cb and 1Hd/e chemical shifts of aromatic residues in 13C-labeled proteins via scalar couplings. J Am Chem Soc 115: 1105411055.
  • Zheng, M., Aslund, F., and Storz, G. (1998) Activation of the OxyR transcription factor by reversible disulfide bond formation. Science 279: 17181721.
  • Zorzini, V., Haesaerts, S., Cheung, A., Loris, R., and van Nuland, N.A. (2011) 1H, 13C, and 15N backbone and side-chain chemical shift assignment of the staphylococcal MazF mRNA interferase. Biomol NMR Assign 5: 157160.