SEARCH

SEARCH BY CITATION

References

  • Andruski, B., McCafferty, D.M., Ignacy, T., Millen, B., and McDougall, J.J. (2008) Leukocyte trafficking and pain behavioral responses to a hydrogen sulfide donor in acute monoarthritis. Am J Physiol Regul Integr Comp Physiol 295: R814R820.
  • Antonara, S., Ristow, L., and Coburn, J. (2011) Adhesion mechanisms of Borrelia burgdorferi. Adv Exp Med Biol 715: 3549.
  • Bankhead, T., and Chaconas, G. (2007) The role of VlsE antigenic variation in the Lyme disease spirochete: persistence through a mechanism that differs from other pathogens. Mol Microbiol 65: 15471558.
  • Barbour, A.G. (1984) Isolation and cultivation of Lyme disease spirochetes. Yale J Biol Med 57: 521525.
  • Benoit, V.M., Fischer, J.R., Lin, Y., Parveen, N., and Leong, J.M. (2011) Allelic variation of the Lyme disease spirochete adhesin DbpA influences spirochetal binding to decorin, dermatan sulfate, and mammalian cells. Infect Immun 79: 35013509.
  • Bentley, K.L., Klebe, R.J., Hurst, R.E., and Horowitz, P.M. (1985) Heparin binding is necessary, but not sufficient, for fibronectin aggregation. A fluorescence polarization study. J Biol Chem 260: 72507256.
  • Brissette, C.A., Bykowski, T., Cooley, A.E., Bowman, A., and Stevenson, B. (2009) Borrelia burgdorferi RevA antigen binds host fibronectin. Infect Immun 77: 28022812.
  • Carroll, J.A., El-Hage, N., Miller, J.C., Babb, K., and Stevenson, B. (2001) Borrelia burgdorferi RevA antigen is a surface-exposed outer membrane protein whose expression is regulated in response to environmental temperature and pH. Infect Immun 69: 52865293.
  • Casjens, S., Palmer, N., van Vugt, R., Huang, W.H., Stevenson, B., Rosa, P., et al. (2000) A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi. Mol Microbiol 35: 490516.
  • Christner, M., Franke, G.C., Schommer, N.N., Wendt, U., Wegert, K., Pehle, P., et al. (2010) The giant extracellular matrix-binding protein of Staphylococcus epidermidis mediates biofilm accumulation and attachment to fibronectin. Mol Microbiol 75: 187207.
  • Drake, S.L., Varnum, J., Mayo, K.H., Letourneau, P.C., Furcht, L.T., and McCarthy, J.B. (1993) Structural features of fibronectin synthetic peptide FN-C/H II, responsible for cell adhesion, neurite extension, and heparan sulfate binding. J Biol Chem 268: 1585915867.
  • Dunham-Ems, S.M., Caimano, M.J., Pal, U., Wolgemuth, C.W., Eggers, C.H., Balic, A., and Radolf, J.D. (2009) Live imaging reveals a biphasic mode of dissemination of Borrelia burgdorferi within ticks. J Clin Invest 119: 36523665.
  • Dunham-Ems, S.M., Caimano, M.J., Eggers, C.H., and Radolf, J.D. (2012) Borrelia burgdorferi requires the alternative sigma factor RpoS for dissemination within the vector during tick-to-mammal transmission. PLoS Pathog 8: e1002532.
  • Eggers, C.H., Caimano, M.J., Clawson, M.L., Miller, W.G., Samuels, D.S., and Radolf, J.D. (2002) Identification of loci critical for replication and compatibility of a Borrelia burgdorferi cp32-based shuttle vector for the expression of fluorescent reporters in the Lyme disease spirochete. Mol Microbiol 43: 281295.
  • Fink, D.L., Green, B.A., and St Geme, J.W., 3rd (2002) The Haemophilus influenzae Hap autotransporter binds to fibronectin, laminin, and collagen IV. Infect Immun 70: 49024907.
  • Fischer, J.R., Leblanc, K.T., and Leong, J.M. (2006) Fibronectin binding protein BBK32 of the Lyme disease spirochete promotes bacterial attachment to glycosaminoglycans. Infect Immun 74: 435441.
  • Fraser, C.M., Casjens, S., Huang, W.M., Sutton, G.G., Clayton, R., Lathigra, R., et al. (1997) Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390: 580586.
  • Hallstrom, T., Haupt, K., Kraiczy, P., Hortschansky, P., Wallich, R., Skerka, C., and Zipfel, P.F. (2010) Complement regulator-acquiring surface protein 1 of Borrelia burgdorferi binds to human bone morphogenic protein 2, several extracellular matrix proteins, and plasminogen. J Infect Dis 202: 490498.
  • Harman, M.W., Dunham-Ems, S.M., Caimano, M.J., Belperron, A.A., Bockenstedt, L.K., Fu, H.C., et al. (2012) The heterogeneous motility of the Lyme disease spirochete in gelatin mimics dissemination through tissue. Proc Natl Acad Sci USA 109: 30593064.
  • Heilmann, C., Hartleib, J., Hussain, M.S., and Peters, G. (2005) The multifunctional Staphylococcus aureus autolysin aaa mediates adherence to immobilized fibrinogen and fibronectin. Infect Immun 73: 47934802.
  • Henderson, B., Nair, S., Pallas, J., and Williams, M.A. (2011) Fibronectin: a multidomain host adhesin targeted by bacterial fibronectin-binding proteins. FEMS Microbiol Rev 35: 147200.
  • Hyde, J.A., Weening, E.H., Chang, M., Trzeciakowski, J.P., Hook, M., Cirillo, J.D., and Skare, J.T. (2011) Bioluminescent imaging of Borrelia burgdorferi in vivo demonstrates that the fibronectin-binding protein BBK32 is required for optimal infectivity. Mol Microbiol 82: 99113.
  • Ingham, K.C., Brew, S.A., and Atha, D.H. (1990) Interaction of heparin with fibronectin and isolated fibronectin domains. Biochem J 272: 605611.
  • Kim, J.H., Singvall, J., Schwarz-Linek, U., Johnson, B.J., Potts, J.R., and Hook, M. (2004) BBK32, a fibronectin binding MSCRAMM from Borrelia burgdorferi, contains a disordered region that undergoes a conformational change on ligand binding. J Biol Chem 279: 4170641714.
  • Klopocki, A.G., Yago, T., Mehta, P., Yang, J., Wu, T., Leppanen, A., et al. (2008) Replacing a lectin-domain residue in L-selectin enhances binding to P-selectin glycoprotein ligand-1 but not to 6-sulfo-sialyl Lewis x. J Biol Chem 283: 1149311500.
  • Labandeira-Rey, M., and Skare, J.T. (2001) Decreased infectivity in Borrelia burgdorferi strain B31 is associated with loss of linear plasmid 25 or 28-1. Infect Immun 69: 446455.
  • Lee, W.Y., Moriarty, T.J., Wong, C.H., Zhou, H., Strieter, R.M., van Rooijen, N., et al. (2010) An intravascular immune response to Borrelia burgdorferi involves Kupffer cells and iNKT cells. Nat Immunol 11: 295302.
  • Ley, K., Laudanna, C., Cybulsky, M.I., and Nourshargh, S. (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7: 678689.
  • Li, X., Liu, X., Beck, D.S., Kantor, F.S., and Fikrig, E. (2006) Borrelia burgdorferi lacking BBK32, a fibronectin-binding protein, retains full pathogenicity. Infect Immun 74: 33053313.
  • Lyon, M., Rushton, G., Askari, J.A., Humphries, M.J., and Gallagher, J.T. (2000) Elucidation of the structural features of heparan sulfate important for interaction with the Hep-2 domain of fibronectin. J Biol Chem 275: 45994606.
  • Meenan, N.A., Visai, L., Valtulina, V., Schwarz-Linek, U., Norris, N.C., Gurusiddappa, S., et al. (2007) The tandem beta-zipper model defines high affinity fibronectin-binding repeats within Staphylococcus aureus FnBPA. J Biol Chem 282: 2589325902.
  • Moriarty, T.J., and Chaconas, G. (2009) Identification of the determinant conferring permissive substrate usage in the telomere resolvase, ResT. J Biol Chem 284: 2329323301.
  • Moriarty, T.J., Norman, M.U., Colarusso, P., Bankhead, T., Kubes, P., and Chaconas, G. (2008) Real-time high resolution 3D imaging of the lyme disease spirochete adhering to and escaping from the vasculature of a living host. PLoS Pathog 4: e1000090.
  • Norman, M.U., Moriarty, T.J., Dresser, A.R., Millen, B., Kubes, P., and Chaconas, G. (2008) Molecular mechanisms involved in vascular interactions of the Lyme disease pathogen in a living host. PLoS Pathog 4: e1000169.
  • Norris, N.C., Bingham, R.J., Harris, G., Speakman, A., Jones, R.P., Leech, A., et al. (2011) Structural and functional analysis of the tandem beta-zipper interaction of a Streptococcal protein with human fibronectin. J Biol Chem 286: 3831138320.
  • Norris, S.J., Coburn, J., Leong, J.M., Hu, L.T., and Hook, M. (2010) Pathobiology of Lyme disease Borrelia. In Borrelia: Molecular Biology, Host Interaction and Pathogenesis D. Samuels, S. , and Radolf, J.D. (eds). Norwich: Horizon Scientific Press, pp. 293325.
  • Pankov, R., and Yamada, K.M. (2002) Fibronectin at a glance. J Cell Sci 115: 38613863.
  • Parveen, N., and Leong, J.M. (2000) Identification of a candidate glycosaminoglycan-binding adhesin of the Lyme disease spirochete Borrelia burgdorferi. Mol Microbiol 35: 12201234.
  • Parveen, N., Caimano, M., Radolf, J.D., and Leong, J.M. (2003) Adaptation of the Lyme disease spirochaete to the mammalian host environment results in enhanced glycosaminoglycan and host cell binding. Mol Microbiol 47: 14331444.
  • Parveen, N., Cornell, K.A., Bono, J.L., Chamberland, C., Rosa, P., and Leong, J.M. (2006) Bgp, a secreted glycosaminoglycan-binding protein of Borrelia burgdorferi strain N40, displays nucleosidase activity and is not essential for infection of immunodeficient mice. Infect Immun 74: 30163020.
  • Prabhakaran, S., Liang, X., Skare, J.T., Potts, J.R., and Hook, M. (2009) A novel fibronectin binding motif in MSCRAMMs targets F3 modules. PLoS ONE 4: e5412.
  • Probert, W.S., and Johnson, B.J. (1998) Identification of a 47 kDa fibronectin-binding protein expressed by Borrelia burgdorferi isolate B31. Mol Microbiol 30: 10031015.
  • Probert, W.S., Kim, J.H., Hook, M., and Johnson, B.J. (2001) Mapping the ligand-binding region of Borrelia burgdorferi fibronectin-binding protein BBK32. Infect Immun 69: 41294133.
  • Raibaud, S., Schwarz-Linek, U., Kim, J.H., Jenkins, H.T., Baines, E.R., Gurusiddappa, S., et al. (2005) Borrelia burgdorferi binds fibronectin through a tandem beta-zipper, a common mechanism of fibronectin binding in Staphylococci, Streptococci, and spirochetes. J Biol Chem 280: 1880318809.
  • Samuels, D.S. (1995) Electrotransformation of the spirochete Borrelia burgdorferi. Methods Mol Biol 47: 253259.
  • Schmid, G. (1989) Epidemiology and clinical similarities of human spirochetal diseases. Rev Infect Dis 11: S1460S1469.
  • Schmit, V.L., Patton, T.G., and Gilmore, R.D., Jr (2011) Analysis of Borrelia burgdorferi surface proteins as determinants in establishing host cell interactions. Front Microbiol 2 (141): 18.
  • Schwarz-Linek, U., Hook, M., and Potts, J.R. (2004) The molecular basis of fibronectin-mediated bacterial adherence to host cells. Mol Microbiol 52: 631641.
  • Seshu, J., Esteve-Gassent, M.D., Labandeira-Rey, M., Kim, J.H., Trzeciakowski, J.P., Hook, M., and Skare, J.T. (2006) Inactivation of the fibronectin-binding adhesin gene bbk32 significantly attenuates the infectivity potential of Borrelia burgdorferi. Mol Microbiol 59: 15911601.
  • Sharma, A., Askari, J.A., Humphries, M.J., Jones, E.Y., and Stuart, D.I. (1999) Crystal structure of a heparin- and integrin-binding segment of human fibronectin. EMBO J 18: 14681479.
  • Stanek, G., Wormser, G.P., Gray, J., and Strle, F. (2012) Lyme borreliosis. Lancet 379: 461473.
  • Steere, A.C., Coburn, J., and Glickstein, L. (2004) The emergence of Lyme disease. J Clin Invest 113: 10931101.
  • Tamura, G.S., Hull, J.R., Oberg, M.D., and Castner, D.G. (2006) High-affinity interaction between fibronectin and the group B streptococcal C5a peptidase is unaffected by a naturally occurring four-amino-acid deletion that eliminates peptidase activity. Infect Immun 74: 57395746.
  • Thomas, W.E. (2009) Mechanochemistry of receptor-ligand bonds. Curr Opin Struct Biol 19: 5055.
  • Tourand, Y., Bankhead, T., Wilson, S.L., Putteet-Driver, A.D., Barbour, A.G., Byram, R., et al. (2006) Differential telomere processing by Borrelia telomere resolvases in vitro but not in vivo. J Bacteriol 188: 73787386.
  • Wang, L., Fuster, M., Sriramarao, P., and Esko, J.D. (2005) Endothelial heparan sulfate deficiency impairs L-selectin- and chemokine-mediated neutrophil trafficking during inflammatory responses. Nat Immunol 6: 902910.
  • Wilske, B. (2005) Epidemiology and diagnosis of Lyme borreliosis. Ann Med 37: 568579.
  • Wu, J., Weening, E.H., Faske, J.B., Hook, M., and Skare, J.T. (2011) Invasion of eukaryotic cells by Borrelia burgdorferi requires β1 integrins and Src kinase activity. Infect Immun 79: 13381348.
  • Yang, X.F., Pal, U., Alani, S.M., Fikrig, E., and Norgard, M.V. (2004) Essential role for OspA/B in the life cycle of the Lyme disease spirochete. J Exp Med 199: 641648.
  • Zeghouf, M., Li, J., Butland, G., Borkowska, A., Canadien, V., Richards, D., et al. (2004) Sequential Peptide Affinity (SPA) system for the identification of mammalian and bacterial protein complexes. J Proteome Res 3: 463468.
  • Zipfel, P.F., Wurzner, R., and Skerka, C. (2007) Complement evasion of pathogens: common strategies are shared by diverse organisms. Mol Immunol 44: 38503857.