SEARCH

SEARCH BY CITATION

References

  • Artsimovitch, I., Svetlov, V., Murakami, K.S., and Landick, R. (2003) Co-overexpression of Escherichia coli RNA polymerase subunits allows isolation and analysis of mutant enzymes lacking lineage-specific sequence insertions. J Biol Chem 278: 1234412355.
  • Audic, S., and Claverie, J.M. (1997) The significance of digital gene expression profiles. Genome Res 7: 986995.
  • Cherkasov, A., Lee, S.J., Nandan, D., and Reiner, N.E. (2006) Large-scale survey for potentially targetable indels in bacterial and protozoan proteins. Proteins 62: 371380.
  • CLSI (2008) Performance Standards for Antimicrobial Susceptibility Testing. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts. M27-A3. Wayne, PA: Clinical and Laboratory Standards Institute.
  • Davidson, R.C., Cruz, M.C., Sia, R.A., Allen, B., Alspaugh, J.A., and Heitman, J. (2000) Gene disruption by biolistic transformation in serotype D strains of Cryptococcus neoformans. Fungal Genet Biol 29: 3848.
  • Davidson, R.C., Blankenship, J.R., Kraus, P.R., de Jesus Berrios, M., Hull, C.M., D'Souza, C., et al. (2002) A PCR-based strategy to generate integrative targeting alleles with large regions of homology. Microbiology 148: 26072615.
  • Diner, E.J., and Hayes, C.S. (2009) Recombineering reveals a diverse collection of ribosomal proteins L4 and L22 that confer resistance to macrolide antibiotics. J Mol Biol 386: 300315.
  • Ewing, B., Hillier, L., Wendl, M.C., and Green, P. (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8: 175185.
  • Fan, W., Kraus, P.R., Boily, M.J., and Heitman, J. (2005) Cryptococcus neoformans gene expression during murine macrophage infection. Eukaryot Cell 4: 14201433.
  • Gates-Hollingsworth, M.A., and Kozel, T.R. (2009) Phenotypic heterogeneity in expression of epitopes in the Cryptococcus neoformans capsule. Mol Microbiol 74: 126138.
  • Gordon, D., Abajian, C., and Green, P. (1998) Consed: a graphical tool for sequence finishing. Genome Res 8: 195202.
  • Griffiths, E., Kretschmer, M., and Kronstad, J.W. (2012) Aimless mutants of Cryptococcus neoformans: failure to disseminate. Fungal Biol. Rev. 26: 6172.
  • Haynes, B.C., Skowyra, M.L., Spencer, S.J., Gish, S.R., Williams, M., Held, E.P., et al. (2011) Toward an integrated model of capsule regulation in Cryptococcus neoformans. PLoS Pathog 7: e1002411.
  • Himmelreich, U., Allen, C., Dowd, S., Malik, R., Shehan, B.P., Mountford, C., and Sorrell, T.C. (2003) Identification of metabolites of importance in the pathogenesis of pulmonary cryptococcoma using nuclear magnetic resonance spectroscopy. Microbes Infect 5: 285290.
  • Hu, G., and Kronstad, J.W. (2006) Gene disruption in Cryptococcus neoformans and Cryptococcus gattii by in vitro transposition. Curr Genet 49: 341350.
  • Hu, G., Steen, B.R., Lian, T., Sham, A.P., Tam, N., Tangen, K.L., and Kronstad, J.W. (2007) Transcriptional regulation by protein kinase A in Cryptococcus neoformans. PLoS Pathog 3: e42.
  • Hu, G., Cheng, P.Y., Sham, A., Perfect, J.R., and Kronstad, J.W. (2008) Metabolic adaptation in Cryptococcus neoformans during early murine pulmonary infection. Mol Microbiol 69: 14561475.
  • Hynes, M.J., and Murray, S.L. (2010) ATP-citrate lyase is required for production of cytosolic acetyl coenzyme A and development in Aspergillus nidulans. Eukaryot Cell 9: 10391048.
  • Idnurm, A., Giles, S.S., Perfect, J.R., and Heitman, J. (2007) Peroxisome function regulates growth on glucose in the basidiomycete fungus Cryptococcus neoformans. Eukaryot Cell 6: 6072.
  • Janbon, G., Himmelreich, U., Moyrand, F., Improvisi, L., and Dromer, F. (2001) Cas1p is a membrane protein necessary for the O-acetylation of the Cryptococcus neoformans capsular polysaccharide. Mol Microbiol 42: 453467.
  • Kim, Y.M., Shin, H.T., Seo, Y.H., Byun, H.O., Yoon, S.H., Lee, I.K., et al. (2010) Sterol regulatory element-binding protein (SREBP)-1-mediated lipogenesis is involved in cell senescence. J Biol Chem 285: 2906929077.
  • Kimura, M. (1983) The Neutral Theory of Molecular Evolution. Cambridge: Cambridge University Press.
  • Klemm, R.W., Ejsing, C.S., Surma, M.A., Kaiser, H.J., Gerl, M.J., Sampaio, J.L., et al. (2009) Segregation of sphingolipids and sterols during formation of secretory vesicles at the trans-Golgi network. J Cell Biol 185: 601612.
  • Kozel, T.R., Levitz, S.M., Dromer, F., Gates, M.A., Thorkildson, P., and Janbon, G. (2003) Antigenic and biological characteristics of mutant strains of Cryptococcus neoformans lacking capsular O acetylation or xylosyl side chains. Infect Immun 71: 28682875.
  • Kretschmer, M., Wang, J., and Kronstad, J.W. (2012) Peroxisomal and mitochondrial beta-oxidation influence the virulence of the pathogenic fungus Cryptococcus neoformans. Eukaryot Cell 11: 10421054.
  • Kronstad, J.W., Attarian, R., Cadieux, B., Choi, J., D'Souza, C.A., Griffiths, E.J., et al. (2011a) Expanding fungal pathogenesis: Cryptococcus breaks out of the opportunistic box. Nat Rev Microbiol 9: 193203.
  • Kronstad, J., Saikia, S., Nielson, E.D., Kretschmer, M., Jung, W., Hu, G., et al. (2011b) Adaptation of Cryptococcus neoformans to mammalian hosts: integrated regulation of metabolism and virulence. Eukaryot Cell 11: 109118.
  • Mousley, C.J., Yuan, P., Gaur, N.A., Trettin, K.D., Nile, A.H., Deminoff, S.J., et al. (2012) A sterol-binding protein integrates endosomal lipid metabolism with TOR signaling and nitrogen sensing. Cell 148: 702715.
  • Moyrand, F., Klaproth, B., Himmelreich, U., Dromer, F., and Janbon, G. (2002) Isolation and characterization of capsule structure mutant strains of Cryptococcus neoformans. Mol Microbiol 45: 837849.
  • Moyrand, F., Fontaine, T., and Janbon, G. (2007) Systematic capsule gene disruption reveals the central role of galactose metabolism on Cryptococcus neoformans virulence. Mol Microbiol 64: 771781.
  • Moyrand, F., Lafontaine, I., Fontaine, T., and Janbon, G. (2008) UGE1 and UGE2 regulate the UDP-glucose/UDP-galactose equilibrium in Cryptococcus neoformans. Eukaryot Cell 7: 20692077.
  • Nowrousian, M., Masloff, S., Poggeler, S., and Kuck, U. (1999) Cell differentiation during sexual development of the fungus Sordaria macrospora requires ATP citrate lyase activity. Mol Cell Biol 19: 450460.
  • O'Meara, T.R., Hay, C., Price, M.S., Giles, S., and Alspaugh, J.A. (2010a) Cryptococcus neoformans histone acetyltransferase Gcn5 regulates fungal adaptation to the host. Eukaryot Cell 9: 11931202.
  • O'Meara, T.R., Norton, D., Price, M.S., Hay, C., Clements, M.F., Nichols, C.B., and Alspaugh, J.A. (2010b) Interaction of Cryptococcus neoformans Rim101 and protein kinase A regulates capsule. PLoS Pathog 6: e1000776.
  • Panepinto, J., Liu, L., Ramos, J., Zhu, X., Valyi-Nagy, T., Eksi, S., et al. (2005) The DEAD-box RNA helicase Vad1 regulates multiple virulence-associated genes in Cryptococcus neoformans. J Clin Invest 115: 632641.
  • Park, B.J., Wannemuehler, K.A., Marston, B.J., Govender, N., Pappas, P.G., and Chiller, T.M. (2009) Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS 23: 525530.
  • Pierce, M.W., Palmer, J.L., Keutmann, H.T., and Avruch, J. (1981) ATP-citrate lyase. Structure of a tryptic peptide containing the phosphorylation site directed by glucagon and the cAMP-dependent protein kinase. J Biol Chem 256: 88678870.
  • Price, M.S., Betancourt-Quiroz, M., Price, J.L., Toffaletti, D.L., Vora, H., Hu, G., Kronstad, J.W., and Perfect, J.R. (2011) Cryptococcus neoformans requires a functional glycolytic pathway for disease but not persistence in the host. MBio 2: e00103-00111.
  • Rachini, A., Pietrella, D., Lupo, P., Torosantucci, A., Chiani, P., Bromuro, C., et al. (2007) An anti-beta-glucan monoclonal antibody inhibits growth and capsule formation of Cryptococcus neoformans in vitro and exerts therapeutic, anticryptococcal activity in vivo. Infect Immun 75: 50855094.
  • Reese, A.J., and Doering, T.L. (2003) Cell wall alpha-1,3-glucan is required to anchor the Cryptococcus neoformans capsule. Mol Microbiol 50: 14011409.
  • Reese, A.J., Yoneda, A., Breger, J.A., Beauvais, A., Liu, H., Griffith, C.L., et al. (2007) Loss of cell wall alpha(1-3) glucan affects Cryptococcus neoformans from ultrastructure to virulence. Mol Microbiol 63: 13851398.
  • Revankar, S.G., Fu, J., Rinaldi, M.G., Kelly, S.L., Kelly, D.E., Lamb, D.C., et al. (2004) Cloning and characterization of the lanosterol 14alpha-demethylase (ERG11) gene in Cryptococcus neoformans. Biochem Biophys Res Commun 324: 719728.
  • Rietsch, A., and Mekalanos, J.J. (2006) Metabolic regulation of type III secretion gene expression in Pseudomonas aeruginosa. Mol Microbiol 59: 807820.
  • Roy, A., Kucukural, A., and Zhang, Y. (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5: 725738.
  • Rude, T.H., Toffaletti, D.L., Cox, G.M., and Perfect, J.R. (2002) Relationship of the glyoxylate pathway to the pathogenesis of Cryptococcus neoformans. Infect Immun 70: 56845694.
  • Sato, R., Okamoto, A., Inoue, J., Miyamoto, W., Sakai, Y., Emoto, N., et al. (2000) Transcriptional regulation of the ATP citrate-lyase gene by sterol regulatory element-binding proteins. J Biol Chem 275: 1249712502.
  • Schrick, K., Debolt, S., and Bulone, V. (2012) Deciphering the molecular functions of sterols in cellulose biosynthesis. Front Plant Sci 3: 84.
  • Son, H., Lee, J., Park, A.R., and Lee, Y.W. (2011) ATP citrate lyase is required for normal sexual and asexual development in Gibberella zeae. Fungal Genet Biol 48: 408417.
  • Spitzer, M., Griffiths, E., Blakely, K.M., Wildenhain, J., Ejim, L., Rossi, L., et al. (2011) Cross-species discovery of syncretic drug combinations that potentiate the antifungal fluconazole. Mol Syst Biol 7: 499.
  • Steen, B.R., Lian, T., Zuyderduyn, S., MacDonald, W.K., Marra, M., Jones, S.J., and Kronstad, J.W. (2002) Temperature-regulated transcription in the pathogenic fungus Cryptococcus neoformans. Genome Res 12: 13861400.
  • Steen, B.R., Zuyderduyn, S., Toffaletti, D.L., Marra, M., Jones, S.J., Perfect, J.R., and Kronstad, J. (2003) Cryptococcus neoformans gene expression during experimental cryptococcal meningitis. Eukaryot Cell 2: 13361349.
  • Sun, T., Hayakawa, K., Bateman, K.S., and Fraser, M.E. (2010) Identification of the citrate-binding site of human ATP-citrate lyase using X-ray crystallography. J Biol Chem 285: 2741827428.
  • Sun, T., Hayakawa, K., and Fraser, M.E. (2011) ADP-Mg2+ bound to the ATP-grasp domain of ATP-citrate lyase. Acta Crystallogr Sect F Struct Biol Cryst Commun 67: 11681172.
  • Surma, M.A., Klose, C., Klemm, R.W., Ejsing, C.S., and Simons, K. (2011) Generic sorting of raft lipids into secretory vesicles in yeast. Traffic 12: 11391147.
  • Szutowicz, A., Stepien, M., Lysiak, W., and Angielski, S. (1976) Effect of (-)hydroxycitrate on the activities of ATP citrate lyase and the enzymes of acetyl-CoA metabolism in rat brain. Acta Biochim Pol 23: 227234.
  • Takahata, S., Ida, T., Hiraishi, T., Sakakibara, S., Maebashi, K., Terada, S., et al. (2010) Molecular mechanisms of fosfomycin resistance in clinical isolates of Escherichia coli. Int J Antimicrob Agents 35: 333337.
  • Van de Peer, Y., and De Wachter, R. (1997) Construction of evolutionary distance trees with TREECON for Windows: accounting for variation in nucleotide substitution rate among sites. Comput Appl Biosci 13: 227230.
  • Velculescu, V.E., Zhang, L., Vogelstein, B., and Kinzler, K.W. (1995) Serial analysis of gene expression. Science 270: 484487.
  • Vorapreeda, T., Thammarongtham, C., Cheevadhanarak, S., and Laoteng, K. (2012) Alternative routes of acetyl-CoA synthesis identified by comparative genomic analysis: involvement in the lipid production of oleaginous yeast and fungi. Microbiology 158: 217228.
  • Wang, Q., Zhang, Y., Yang, C., Xiong, H., Lin, Y., Yao, J., et al. (2010) Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science 327: 10041007.
  • Wellen, K.E., Hatzivassiliou, G., Sachdeva, U.M., Bui, T.V., Cross, J.R., and Thompson, C.B. (2009) ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324: 10761080.
  • Wilder, J.A., Olson, G.K., Chang, Y.C., Kwon-Chung, K.J., and Lipscomb, M.F. (2002) Complementation of a capsule deficient Cryptococcus neoformans with CAP64 restores virulence in a murine lung infection. Am J Respir Cell Mol Biol 26: 306314.
  • Wood, N., Bhattacharya, T., Keele, B.F., Giorgi, E., Liu, M., Gaschen, B., et al. (2009) HIV evolution in early infection: selection pressures, patterns of insertion and deletion, and the impact of APOBEC. PLoS Pathog 5: e1000414.
  • Yoneda, A., and Doering, T.L. (2008) Regulation of Cryptococcus neoformans capsule size is mediated at the polymer level. Eukaryot Cell 7: 546549.
  • Yu, J.H., Hamari, Z., Han, K.H., Seo, J.A., Reyes-Dominguez, Y., and Scazzocchio, C. (2004) Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol 41: 973981.
  • Zhu, X., and Williamson, P.R. (2004) Role of laccase in the biology and virulence of Cryptococcus neoformans. FEMS Yeast Res 5: 110.