SEARCH

SEARCH BY CITATION

References

  • Angell, S., Schwarz, E., and Bibb, M.J. (1992) The glucose kinase gene of Streptomyces coelicolor A3(2): its nucleotide sequence, transcriptional analysis and role in glucose repression. Mol Microbiol 6: 28332844.
  • Angell, S., Lewis, C.G., Buttner, M.J., and Bibb, M.J. (1994) Glucose repression in Streptomyces coelicolor A3(2): a likely regulatory role for glucose kinase. Mol Gen Genet 244: 135143.
  • Barends, S., Zehl, M., Bialek, S., de Waal, E., Traag, B.A., Willemse, J., et al. (2010) Transfer-messenger RNA controls the translation of cell-cycle and stress proteins in Streptomyces. EMBO Rep 11: 119125.
  • Bentley, S.D., Chater, K.F., Cerdeno-Tarraga, A.M., Challis, G.L., Thomson, N.R., James, K.D., et al. (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417: 141147.
  • Bibb, M.J., Molle, V., and Buttner, M.J. (2000) sigma(BldN), an extracytoplasmic function RNA polymerase sigma factor required for aerial mycelium formation in Streptomyces coelicolor A3(2). J Bacteriol 182: 46064616.
  • Boersema, P.J., Raijmakers, R., Lemeer, S., Mohammed, S., and Heck, A.J. (2009) Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat Protoc 4: 484494.
  • Brückner, R., and Titgemeyer, F. (2002) Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiol Lett 209: 141148.
  • Challis, G.L., and Hopwood, D.A. (2003) Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc Natl Acad Sci USA 100: 1455514561.
  • Chater, K.F. (2001) Regulation of sporulation in Streptomyces coelicolor A3(2): a checkpoint multiplex? Curr Opin Microbiol 4: 667673.
  • Chater, K.F., Biro, S., Lee, K.J., Palmer, T., and Schrempf, H. (2010) The complex extracellular biology of Streptomyces. FEMS Microbiol Rev 34: 171198.
  • Cox, J., and Mann, M. (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26: 13671372.
  • Cox, J., Neuhauser, N., Michalski, A., Scheltema, R.A., Olsen, J.V., and Mann, M. (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10: 17941805.
  • Davidson, A.L., Dassa, E., Orelle, C., and Chen, J. (2008) Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 72: 317364, table of contents.
  • Demain, A.L. (1999) Pharmaceutically active secondary metabolites of microorganisms. Appl Microbiol Biotechnol 52: 455463.
  • Feitelson, J.S., Malpartida, F., and Hopwood, D.A. (1985) Genetic and biochemical characterization of the red gene cluster of Streptomyces coelicolor A3(2). J Gen Microbiol 131: 24312441.
  • Flärdh, K., and Buttner, M.J. (2009) Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat Rev Microbiol 7: 3649.
  • Gorke, B., and Stulke, J. (2008) Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6: 613624.
  • Gramajo, H.C., Takano, E., and Bibb, M.J. (1993) Stationary-phase production of the antibiotic actinorhodin in Streptomyces coelicolor A3(2) is transcriptionally regulated. Mol Microbiol 7: 837845.
  • Guzman, S., Ramos, I., Moreno, E., Ruiz, B., Rodriguez-Sanoja, R., Escalante, L., et al. (2005) Sugar uptake and sensitivity to carbon catabolite regulation in Streptomyces peucetius var. caesius. Appl Microbiol Biotechnol 69: 200206.
  • den Hengst, C.D., Tran, N.T., Bibb, M.J., Chandra, G., Leskiw, B.K., and Buttner, M.J. (2010) Genes essential for morphological development and antibiotic production in Streptomyces coelicolor are targets of BldD during vegetative growth. Mol Microbiol 78: 361379.
  • Hopwood, D.A. (2007) Streptomyces in Nature and Medicine: the Antibiotic Makers. New York: Oxford University Press.
  • Ingram, C., and Westpheling, J. (1995) The glucose kinase gene of Streptomyces coelicolor is not required for glucose repression of the chi63 promoter. J Bacteriol 177: 35873588.
  • Jakimowicz, D., and van Wezel, G.P. (2012) Cell division and DNA segregation in Streptomyces: how to build a septum in the middle of nowhere? Mol Microbiol 85: 393404.
  • Keijser, B.J., Noens, E.E., Kraal, B., Koerten, H.K., and van Wezel, G.P. (2003) The Streptomyces coelicolor ssgB gene is required for early stages of sporulation. FEMS Microbiol Lett 225: 5967.
  • Kieser, T., Bibb, M.J., Buttner, M.J., Chater, K.F., and Hopwood, D.A. (2000) Practical Streptomyces Genetics. Norwich: The John Innes Foundation.
  • Kwakman, J.H., and Postma, P.W. (1994) Glucose kinase has a regulatory role in carbon catabolite repression in Streptomyces coelicolor. J Bacteriol 176: 26942698.
  • Liu, H., and Reynolds, K.A. (2001) Precursor supply for polyketide biosynthesis: the role of crotonyl-CoA reductase. Metab Eng 3: 4048.
  • Lunin, V.V., Li, Y., Schrag, J.D., Iannuzzi, P., Cygler, M., and Matte, A. (2004) Crystal structures of Escherichia coli ATP-dependent glucokinase and its complex with glucose. J Bacteriol 186: 69156927.
  • Mahr, K., van Wezel, G.P., Svensson, C., Krengel, U., Bibb, M.J., and Titgemeyer, F. (2000) Glucose kinase of Streptomyces coelicolor A3(2): large-scale purification and biochemical analysis. Antonie Van Leeuwenhoek 78: 253261.
  • Manteca, A., Jung, H.R., Schwammle, V., Jensen, O.N., and Sanchez, J. (2010a) Quantitative proteome analysis of Streptomyces coelicolor nonsporulating liquid cultures demonstrates a complex differentiation process comparable to that occurring in sporulating solid cultures. J Proteome Res 9: 48014811.
  • Manteca, A., Sanchez, J., Jung, H.R., Schwammle, V., and Jensen, O.N. (2010b) Quantitative proteomics analysis of Streptomyces coelicolor development demonstrates that onset of secondary metabolism coincides with hypha differentiation. Mol Cell Proteomics 9: 14231436.
  • Marsden, A.F., Wilkinson, B., Cortes, J., Dunster, N.J., Staunton, J., and Leadlay, P.F. (1998) Engineering broader specificity into an antibiotic-producing polyketide synthase. Science 279: 199202.
  • Martinez, A., Kolvek, S.J., Hopke, J., Yip, C.L., and Osburne, M.S. (2005) Environmental DNA fragment conferring early and increased sporulation and antibiotic production in Streptomyces species. Appl Environ Microbiol 71: 16381641.
  • Milenbachs, A.A., Brown, D.P., Moors, M., and Youngman, P. (1997) Carbon-source regulation of virulence gene expression in Listeria monocytogenes. Mol Microbiol 23: 10751085.
  • Miyazono, K., Tabei, N., Morita, S., Ohnishi, Y., Horinouchi, S., and Tanokura, M. (2012) Substrate recognition mechanism and substrate-dependent conformational changes of an ROK family glucokinase from Streptomyces griseus. J Bacteriol 194: 607616.
  • Nothaft, H., Rigali, S., Boomsma, B., Swiatek, M., McDowall, K.J., van Wezel, G.P., and Titgemeyer, F. (2010) The permease gene nagE2 is the key to N-acetylglucosamine sensing and utilization in Streptomyces coelicolor and is subject to multi-level control. Mol Microbiol 75: 11331144.
  • Olsen, J.V., de Godoy, L.M., Li, G., Macek, B., Mortensen, P., Pesch, R., et al. (2005) Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Mol Cell Proteomics 4: 20102021.
  • Pao, S.S., Paulsen, I.T., and Saier, M.H., Jr (1998) Major facilitator superfamily. Microbiol Mol Biol Rev 62: 134.
  • Park, S.S., Yang, Y.H., Song, E., Kim, E.J., Kim, W.S., Sohng, J.K., et al. (2009) Mass spectrometric screening of transcriptional regulators involved in antibiotic biosynthesis in Streptomyces coelicolor A3(2). J Ind Microbiol Biotechnol 36: 10731083.
  • Patton, S.M., Cropp, T.A., and Reynolds, K.A. (2000) A novel delta(3),delta(2)-enoyl-CoA isomerase involved in the biosynthesis of the cyclohexanecarboxylic acid-derived moiety of the polyketide ansatrienin A. Biochemistry 39: 75957604.
  • Piette, A., Derouaux, A., Gerkens, P., Noens, E.E., Mazzucchelli, G., Vion, S., et al. (2005) From dormant to germinating spores of Streptomyces coelicolor A3(2): new perspectives from the crp null mutant. J Proteome Res 4: 16991708.
  • Pope, M.K., Green, B.D., and Westpheling, J. (1996) The bld mutants of Streptomyces coelicolor are defective in the regulation of carbon utilization, morphogenesis and cell–cell signalling. Mol Microbiol 19: 747756.
  • Pope, M.K., Green, B., and Westpheling, J. (1998) The bldB gene encodes a small protein required for morphogenesis, antibiotic production, and catabolite control in Streptomyces coelicolor. J Bacteriol 180: 15561562.
  • Rappsilber, J., Mann, M., and Ishihama, Y. (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2: 18961906.
  • Rigali, S., Titgemeyer, F., Barends, S., Mulder, S., Thomae, A.W., Hopwood, D.A., and van Wezel, G.P. (2008) Feast or famine: the global regulator DasR links nutrient stress to antibiotic production by Streptomyces. EMBO Rep 9: 670675.
  • Rodriguez, E., Banchio, C., Diacovich, L., Bibb, M.J., and Gramajo, H. (2001) Role of an essential acyl coenzyme A carboxylase in the primary and secondary metabolism of Streptomyces coelicolor A3(2). Appl Environ Microbiol 67: 41664176.
  • Rodriguez, E., Navone, L., Casati, P., and Gramajo, H. (2012) Impact of malic enzymes on antibiotic and triacylglycerol production in Streptomyces coelicolor. Appl Environ Microbiol 78: 45714579.
  • Sanchez, S., Chavez, A., Forero, A., Garcia-Huante, Y., Romero, A., Sanchez, M., et al. (2010) Carbon source regulation of antibiotic production. J Antibiot (Tokyo) 63: 442459.
  • Sauer, U., and Eikmanns, B.J. (2005) The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiol Rev 29: 765794.
  • Schlösser, A., Kampers, T., and Schrempf, H. (1997) The Streptomyces ATP-binding component MsiK assists in cellobiose and maltose transport. J Bacteriol 179: 20922095.
  • Shelburne, S.A., 3rd, Keith, D., Horstmann, N., Sumby, P., Davenport, M.T., Graviss, E.A., et al. (2008) A direct link between carbohydrate utilization and virulence in the major human pathogen group A Streptococcus. Proc Natl Acad Sci USA 105: 16981703.
  • Swiatek, M.A., Tenconi, E., Rigali, S., and van Wezel, G. (2012a) Functional analysis of the N-acetylglucosamine metabolic genes of Streptomyces coelicolor and role in the control of development and antibiotic production. J Bacteriol 194: 11361144.
  • Swiatek, M.A., Urem, M., Tenconi, E., Rigali, S., and van Wezel, G.P. (2012b) Engineering of N-acetylglucosamine metabolism for improved antibiotic production in Streptomyces coelicolor A3(2) and an unsuspected role of NagA in glucosamine metabolism. Bioengineered 3: 280285. doi:10.4161/bioe.21371
  • Takano, E., Chakraburtty, R., Nihira, T., Yamada, Y., and Bibb, M.J. (2001) A complex role for the gamma-butyrolactone SCB1 in regulating antibiotic production in Streptomyces coelicolor A3(2). Mol Microbiol 41: 10151028.
  • Takano, E., Kinoshita, H., Mersinias, V., Bucca, G., Hotchkiss, G., Nihira, T., et al. (2005) A bacterial hormone (the SCB1) directly controls the expression of a pathway-specific regulatory gene in the cryptic type I polyketide biosynthetic gene cluster of Streptomyces coelicolor. Mol Microbiol 56: 465479.
  • Thorpe, C., and Kim, J.J. (1995) Structure and mechanism of action of the acyl-CoA dehydrogenases. FASEB J 9: 718725.
  • Titgemeyer, F., Reizer, J., Reizer, A., and Saier, M.H., Jr (1994) Evolutionary relationships between sugar kinases and transcriptional repressors in bacteria. Microbiology 140: 23492354.
  • Titgemeyer, F., Amon, J., Parche, S., Mahfoud, M., Bail, J., Schlicht, M., et al. (2007) A genomic view of sugar transport in Mycobacterium smegmatis and Mycobacterium tuberculosis. J Bacteriol 189: 59035915.
  • Tong, L. (2005) Acetyl-coenzyme A carboxylase: crucial metabolic enzyme and attractive target for drug discovery. Cell Mol Life Sci 62: 17841803.
  • Wang, W., Shu, D., Chen, L., Jiang, W., and Lu, Y. (2009) Cross-talk between an orphan response regulator and a noncognate histidine kinase in Streptomyces coelicolor. FEMS Microbiol Lett 294: 150156.
  • Wessel, D., and Flugge, U.I. (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138: 141143.
  • van Wezel, G., Konig, M., Mahr, K., Nothaft, H., Thomae, A.W., Bibb, M., and Titgemeyer, F. (2007) A new piece of an old jigsaw: glucose kinase is activated posttranslationally in a glucose transport-dependent manner in Streptomyces coelicolor A3(2). J Mol Microbiol Biotechnol 12: 6774.
  • van Wezel, G.P., and McDowall, K.J. (2011) The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat Prod Rep 28: 13111333.
  • van Wezel, G.P., White, J., Bibb, M.J., and Postma, P.W. (1997a) The malEFG gene cluster of Streptomyces coelicolor A3(2): characterization, disruption and transcriptional analysis. Mol Gen Genet 254: 604608.
  • van Wezel, G.P., White, J., Young, P., Postma, P.W., and Bibb, M.J. (1997b) Substrate induction and glucose repression of maltose utilization by Streptomyces coelicolor A3(2) is controlled by malR, a member of the lacl-galR family of regulatory genes. Mol Microbiol 23: 537549.
  • van Wezel, G.P., Mahr, K., Konig, M., Traag, B.A., Pimentel-Schmitt, E.F., Willimek, A., and Titgemeyer, F. (2005) GlcP constitutes the major glucose uptake system of Streptomyces coelicolor A3(2). Mol Microbiol 55: 624636.
  • van Wezel, G.P., Krabben, P., Traag, B.A., Keijser, B.J., Kerste, R., Vijgenboom, E., et al. (2006) Unlocking Streptomyces spp. for use as sustainable industrial production platforms by morphological engineering. Appl Environ Microbiol 72: 52835288.
  • Willemse, J., Borst, J.W., de Waal, E., Bisseling, T., and van Wezel, G.P. (2011) Positive control of cell division: FtsZ is recruited by SsgB during sporulation of Streptomyces. Genes Dev 25: 8999.
  • Yang, Y.H., Song, E., Kim, J.N., Lee, B.R., Kim, E.J., Park, S.H., et al. (2012) Characterization of a new ScbR-like gamma-butyrolactone binding regulator (SlbR) in Streptomyces coelicolor. Appl Microbiol Biotechnol 96: 113121.