SEARCH

SEARCH BY CITATION

References

  • Alkhatib, Z., Abts, A., Mavaro, A., Schmitt, L., and Smits, S.H.J. (2012) Lantibiotics: how do producers become self-protected? J Biotechnol 159: 145154.
  • Altena, K., Guder, A., Cramer, C., and Bierbaum, G. (2000) Biosynthesis of the lantibiotic mersacidin: organization of a type B lantibiotic gene cluster. Appl Environ Microbiol 66: 25652571.
  • Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990) Basic local alignment search tool. J Mol Biol 215: 403410.
  • Arthur, M., and Courvalin, P. (1993) Genetics and mechanisms of glycopeptide resistance in enterococci. Antimicrob Agents Chemother 37: 1563.
  • Aso, Y., Sashihara, T., Nagao, J.-I., Kanemasa, Y., Koga, H., Hashimoto, T., et al. (2004) Characterization of a gene cluster of Staphylococcus warneri ISK-1 encoding the biosynthesis of and immunity to the lantibiotic, nukacin ISK-1. Biosci Biotechnol Biochem 68: 16631671.
  • Aso, Y., Okuda, K.-I., Nagao, J.-I., Kanemasa, Y., Thi Bich Phuong, N., Koga, H., et al. (2005) A novel type of immunity protein, NukH, for the lantibiotic nukacin ISK-1 produced by Staphylococcus warneri ISK-1. Biosci Biotechnol Biochem 69: 14031410.
  • de Been, M., Bart, M.J., Abee, T., Siezen, R.J., and Francke, C. (2008) The identification of response regulator-specific binding sites reveals new roles of two-component systems in Bacillus cereus and closely related low-GC Gram-positives. Environ Microbiol 10: 27962809.
  • van Belkum, M.J., and Stiles, M.E. (1995) Molecular characterization of genes involved in the production of the bacteriocin leucocin A from Leuconostoc gelidum. Appl Environ Microbiol 61: 35733579.
  • Belotserkovsky, I., Baruch, M., Peer, A., Dov, E., Ravins, M., Mishalian, I., et al. (2009) Functional analysis of the quorum-sensing streptococcal invasion locus (sil). PLoS Pathog 5: e1000651.
  • Bernard, R., Guiseppi, A., Chippaux, M., Foglino, M., and Denizot, F. (2007) Resistance to bacitracin in Bacillus subtilis: unexpected requirement of the BceAB ABC transporter in the control of expression of its own structural genes. J Bacteriol 189: 86368642.
  • Birri, D.J., Brede, D.A., Forberg, T., Holo, H., and Nes, I.F. (2010) Molecular and genetic characterization of a novel bacteriocin locus in Enterococcus avium isolates from infants. Appl Environ Microbiol 76: 483492.
  • Blake, K.L., Randall, C.P., and O'Neill, A.J. (2011) In vitro studies indicate a high resistance potential for the lantibiotic nisin in Staphylococcus aureus and define a genetic basis for nisin resistance. Antimicrob Agents Chemother 55: 23622368.
  • Breukink, E., and de Kruijff, B. (2006) Lipid II as a target for antibiotics. Nat Rev Drug Discov 5: 321323.
  • Butcher, B.G., Lin, Y.P., and Helmann, J.D. (2007) The yydFGHIJ operon of Bacillus subtilis encodes a peptide that induces the LiaRS two-component system. J Bacteriol 189: 86168625.
  • Cao, M., and Helmann, J.D. (2002) Regulation of the Bacillus subtilis bcrC bacitracin resistance gene by two extracytoplasmic function sigma factors. J Bacteriol 184: 61236129.
  • Cao, M., and Helmann, J.D. (2004) The Bacillus subtilis extracytoplasmic-function σX factor regulates modification of the cell envelope and resistance to cationic antimicrobial peptides. J Bacteriol 186: 11361146.
  • Chang, G. (2003) Multidrug resistance ABC transporters. FEBS Lett 555: 102105.
  • Chen, P., Qi, F., Novak, J., and Caufield, P.W. (1999) The specific genes for lantibiotic mutacin II biosynthesis in Streptococcus mutans T8 are clustered and can be transferred en bloc. Appl Environ Microbiol 65: 13561360.
  • Collins, B., Curtis, N., Cotter, P.D., Hill, C., and Ross, R.P. (2010) The ABC transporter AnrAB contributes to the innate resistance of Listeria monocytogenes to nisin, bacitracin, and various β-lactam antibiotics. Antimicrob Agents Chemother 54: 44164423.
  • Cotter, P.D., Hill, C., and Ross, R.P. (2005) Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3: 777788.
  • Dehal, P.S., Joachimiak, M.P., Price, M.N., Bates, J.T., Baumohl, J.K., Chivian, D., et al. (2010) MicrobesOnline: an integrated portal for comparative and functional genomics. Nucleic Acids Res 38: D396D400.
  • Dintner, S., Staroń, A., Berchtold, E., Petri, T., Mascher, T., and Gebhard, S. (2011) Coevolution of ABC transporters and two-component regulatory systems as resistance modules against antimicrobial peptides in Firmicutes Bacteria. J Bacteriol 193: 38513862.
  • Dodd, H.M., Horn, N., and Gasson, M.J. (1990) Analysis of the genetic determinant for production of the peptide antibiotic nisin. J Gen Microbiol 136: 555566.
  • Draper, L.A., Ross, R.P., Hill, C., and Cotter, P.D. (2008) Lantibiotic immunity. Curr Protein Pept Sci 9: 3949.
  • Draper, L.A., Grainger, K., Deegan, L.H., Cotter, P.D., Hill, C., and Ross, R.P. (2009) Cross-immunity and immune mimicry as mechanisms of resistance to the lantibiotic lacticin 3147. Mol Microbiol 71: 10431054.
  • Ehrmann, M.A., Remiger, A., Eijsink, V.G., and Vogel, R.F. (2000) A gene cluster encoding plantaricin 1.25beta and other bacteriocin-like peptides in Lactobacillus plantarum TMW1.25. Biochim Biophys Acta 1490: 355361.
  • Ennahar, S., Sashihara, T., Sonomoto, K., and Ishizaki, A. (2000) Class IIa bacteriocins: biosynthesis, structure and activity. FEMS Microbiol Rev 24: 85106.
  • Eran, Y., Getter, Y., Baruch, M., Belotserkovsky, I., Padalon, G., Mishalian, I., et al. (2007) Transcriptional regulation of the sil locus by the SilCR signalling peptide and its implications on group A Streptococcus virulence. Mol Microbiol 63: 12091222.
  • Ernst, C.M., and Peschel, A. (2011) Broad-spectrum antimicrobial peptide resistance by MprF-mediated aminoacylation and flipping of phospholipids. Mol Microbiol 80: 290299.
  • Falord, M., Mäder, U., Hiron, A., Débarbouillé, M., and Msadek, T. (2011) Investigation of the Staphylococcus aureus GraSR regulon reveals novel links to virulence, stress response and cell wall signal transduction pathways. PLoS ONE 6: e21323.
  • Falord, M., Karimova, G., Hiron, A., and Msadek, T. (2012) GraXSR proteins interact with the VraFG ABC transporter to form a five-component system required for cationic antimicrobial peptide sensing and resistance in Staphylococcus aureus. Antimicrob Agents Chemother 56: 10471058.
  • Fang, X., Tiyanont, K., Zhang, Y., Wanner, J., Boger, D., and Walker, S. (2006) The mechanism of action of ramoplanin and enduracidin. Mol Biosyst 2: 69.
  • Franke, C.M., Leenhouts, K.J., Haandrikman, A.J., Kok, J., Venema, G., and Venema, K. (1996) Topology of LcnD, a protein implicated in the transport of bacteriocins from Lactococcus lactis. J Bacteriol 178: 17661769.
  • Franke, C.M., Tiemersma, J., Venema, G., and Kok, J. (1999) Membrane topology of the lactococcal bacteriocin ATP-binding cassette transporter protein LcnC. Involvement of LcnC in lactococcin A maturation. J Biol Chem 274: 84848490.
  • Fremaux, C., Yann, H., and Cenatiempo, Y. (1995) Mesentericin Y105 gene clusters in Leuconostoc mesenteroides Y105. Microbiology 141: 16371645.
  • Gauntlett, J.C., Gebhard, S., Keis, S., Manson, J.M., Pos, K.M., and Cook, G.M. (2008) Molecular analysis of BcrR, a membrane-bound bacitracin sensor and DNA-binding protein from Enterococcus faecalis. J Biol Chem 283: 85918600.
  • Gebhard, S., and Mascher, T. (2011) Antimicrobial peptide sensing and detoxification modules: unravelling the regulatory circuitry of Staphylococcus aureus. Mol Microbiol 81: 581587.
  • Gebhard, S., Gaballa, A., Helmann, J.D., and Cook, G.M. (2009) Direct stimulus perception and transcription activation by a membrane-bound DNA binding protein. Mol Microbiol 73: 482491.
  • Guder, A., Wiedemann, I., and Sahl, H.G. (2000) Posttranslationally modified bacteriocins – the lantibiotics. Biopolymers 55: 6273.
  • Guder, A., Schmitter, T., Wiedemann, I., Sahl, H.-G., and Bierbaum, G. (2002) Role of the single regulator MrsR1 and the two-component system MrsR2/K2 in the regulation of mersacidin production and immunity. Appl Environ Microbiol 68: 106113.
  • Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41: 9598.
  • Håvarstein, L.S., Diep, D.B., and Nes, I.F. (1995) A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export. Mol Microbiol 16: 229240.
  • Hidalgo-Grass, C., Ravins, M., Dan-Goor, M., Jaffe, J., Moses, A.E., and Hanski, E. (2002) A locus of group A Streptococcus involved in invasive disease and DNA transfer. Mol Microbiol 46: 8799.
  • Hiron, A., Falord, M., Valle, J., Débarbouillé, M., and Msadek, T. (2011) Bacitracin and nisin resistance in Staphylococcus aureus: a novel pathway involving the BraS/BraR two-component system (SA2417/SA2418) and both the BraD/BraE and VraD/VraE ABC transporters. Mol Microbiol 81: 602622.
  • Hui, F.M., Zhou, L., and Morrison, D.A. (1995) Competence for genetic transformation in Streptococcus pneumoniae: organization of a regulatory locus with homology to two lactococcin A secretion genes. Gene 153: 2531.
  • Hyink, O., Wescombe, P.A., Upton, M., Ragland, N., Burton, J.P., and Tagg, J.R. (2007) Salivaricin A2 and the novel lantibiotic salivaricin B are encoded at adjacent loci on a 190-kilobase transmissible megaplasmid in the oral probiotic strain Streptococcus salivarius K12. Appl Environ Microbiol 73: 11071113.
  • Jordan, S., Hutchings, M.I., and Mascher, T. (2008) Cell envelope stress response in Gram-positive bacteria. FEMS Microbiol Rev 32: 107146.
  • Joseph, P. (2004) Characterization of the Bacillus subtilis YxdJ response regulator as the inducer of expression for the cognate ABC transporter YxdLM. Microbiology 150: 26092617.
  • Joseph, P., Fichant, G., Quentin, Y., and Denizot, F. (2002) Regulatory relationship of two-component and ABC transport systems and clustering of their genes in the Bacillus/Clostridium group, suggest a functional link between them. J Mol Microbiol Biotechnol 4: 503513.
  • Kiesau, P., Eikmanns, U., Gutowski-Eckel, Z., Weber, S., Hammelmann, M., and Entian, K.D. (1997) Evidence for a multimeric subtilin synthetase complex. J Bacteriol 179: 14751481.
  • Kjos, M., Borrero, J., Opsata, M., Birri, D.J., Holo, H., Cintas, L.M., et al. (2011) Target recognition, resistance, immunity and genome mining of class II bacteriocins from Gram-positive bacteria. Microbiology 157: 32563267.
  • Kleerebezem, M. (2004) Quorum sensing control of lantibiotic production; nisin and subtilin autoregulate their own biosynthesis. Peptides 25: 14051414.
  • Klein, C., and Entian, K.D. (1994) Genes involved in self-protection against the lantibiotic subtilin produced by Bacillus subtilis ATCC 6633. Appl Environ Microbiol 60: 27932801.
  • Klein, C., Kaletta, C., Schnell, N., and Entian, K.D. (1992) Analysis of genes involved in biosynthesis of the lantibiotic subtilin. Appl Environ Microbiol 58: 132142.
  • Kolar, S.L., Nagarajan, V., Oszmiana, A., Rivera, F.E., Miller, H.K., Davenport, J.E., et al. (2011) NsaRS is a cell-envelope-stress-sensing two-component system of Staphylococcus aureus. Microbiology 157: 22062219.
  • Kreth, J., Merritt, J., Bordador, C., Shi, W., and Qi, F. (2004) Transcriptional analysis of mutacin I (mutA) gene expression in planktonic and biofilm cells of Streptococcus mutans using fluorescent protein and glucuronidase reporters. Oral Microbiol Immunol 19: 252256.
  • Kuipers, A. (2004) NisT, the transporter of the lantibiotic nisin, can transport fully modified, dehydrated, and unmodified prenisin and fusions of the leader peptide with non-lantibiotic peptides. J Biol Chem 279: 2217622182.
  • Kuipers, O.P., Beerthuyzen, M.M., de Ruyter, P.G., Luesink, E.J., and de Vos, W.M. (1995) Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J Biol Chem 270: 2729927304.
  • Letunic, I., Doerks, T., and Bork, P. (2012) SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res 40: D302D305.
  • Li, M., Cha, D.J., Lai, Y., Villaruz, A.E., Sturdevant, D.E., and Otto, M. (2007a) The antimicrobial peptide-sensing system aps of Staphylococcus aureus. Mol Microbiol 66: 11361147.
  • Li, M., Lai, Y., Villaruz, A.E., Cha, D.J., Sturdevant, D.E., and Otto, M. (2007b) Gram-positive three-component antimicrobial peptide-sensing system. Proc Natl Acad Sci USA 104: 94699474.
  • McAuliffe, O., O'Keeffe, T., Hill, C., and Ross, R.P. (2001) Regulation of immunity to the two-component lantibiotic, lacticin 3147, by the transcriptional repressor LtnR. Mol Microbiol 39: 982993.
  • McBride, S.M., and Sonenshein, A.L. (2010) Identification of a genetic locus responsible for antimicrobial peptide resistance in Clostridium difficile. Infect Immun 79: 167176.
  • McBride, S.M., and Sonenshein, A.L. (2011) The dlt operon confers resistance to cationic antimicrobial peptides in Clostridium difficile. Microbiology 157: 14571465.
  • McLaughlin, R.E., Ferretti, J.J., and Hynes, W.L. (1999) Nucleotide sequence of the streptococcin A-FF22 lantibiotic regulon: model for production of the lantibiotic SA-FF22 by strains of Streptococcus pyogenes. FEMS Microbiol Lett 175: 171177.
  • Mandin, P., Fsihi, H., Dussurget, O., Vergassola, M., Milohanic, E., Toledo-Arana, A., et al. (2005) VirR, a response regulator critical for Listeria monocytogenes virulence. Mol Microbiol 57: 13671380.
  • Manson, J.M., Keis, S., Smith, J.M.B., and Cook, G.M. (2004) Acquired bacitracin resistance in Enterococcus faecalis is mediated by an ABC transporter and a novel regulatory protein, BcrR. Antimicrob Agents Chemother 48: 37433748.
  • Marugg, J.D., Gonzalez, C.F., Kunka, B.S., Ledeboer, A.M., Pucci, M.J., Toonen, M.Y., et al. (1992) Cloning, expression, and nucleotide sequence of genes involved in production of pediocin PA-1, and bacteriocin from Pediococcus acidilactici PAC1.0. Appl Environ Microbiol 58: 23602367.
  • Mascher, T. (2006) Intramembrane-sensing histidine kinases: a new family of cell envelope stress sensors in Firmicutes bacteria. FEMS Microbiol Lett 264: 133144.
  • Mascher, T., Margulis, N.G., Wang, T., Ye, R.W., and Helmann, J.D. (2003) Cell wall stress responses in Bacillus subtilis: the regulatory network of the bacitracin stimulon. Mol Microbiol 50: 15911604.
  • Mascher, T., Helmann, J.D., and Unden, G. (2006) Stimulus perception in bacterial signal-transducing histidine kinases. Microbiol Mol Biol Rev 70: 910938.
  • Mascher, T., Hachmann, A.B., and Helmann, J.D. (2007) Regulatory overlap and functional redundancy among Bacillus subtilis extracytoplasmic function σ factors. J Bacteriol 189: 69196927.
  • Matos, R., Pinto, V.V., Ruivo, M., and de Lopes, M.F.S. (2009) Study on the dissemination of the bcrABDR cluster in Enterococcus spp. reveals that the BcrAB transporter is sufficient to confer high-level bacitracin resistance. Int J Antimicrob Agents 34: 142147.
  • Meehl, M., Herbert, S., Götz, F., and Cheung, A. (2007) Interaction of the GraRS two-component system with the VraFG ABC transporter to support vancomycin-intermediate resistance in Staphylococcus aureus. Antimicrob Agents Chemother 51: 26792689.
  • Merritt, J., Kreth, J., Shi, W., and Qi, F. (2005) LuxS controls bacteriocin production in Streptococcus mutans through a novel regulatory component. Mol Microbiol 57: 960969.
  • Meyer, C., Bierbaum, G., Heidrich, C., Reis, M., Süling, J., Iglesias-Wind, M.I., et al. (1995) Nucleotide sequence of the lantibiotic Pep5 biosynthetic gene cluster and functional analysis of PepP and PepC. Evidence for a role of PepC in thioether formation. Eur J Biochem 232: 478489.
  • Morrison, D.A., and Lee, M.S. (2000) Regulation of competence for genetic transformation in Streptococcus pneumoniae: a link between quorum sensing and DNA processing genes. Res Microbiol 151: 445451.
  • Netz, D.J.A., Sahl, H.-G., Marcolino, R., dos Santos Nascimento, J., de Oliveira, S.S., Soares, M.B., and do Carmo de Freire Bastos, M. (2001) Molecular characterisation of aureocin A70, a multi-peptide bacteriocin isolated from Staphylococcus aureus. J Mol Biol 311: 939949.
  • Neuhaus, F.C., and Baddiley, J. (2003) A continuum of anionic charge: structures and functions of d-alanyl-teichoic acids in gram-positive bacteria. Microbiol Mol Biol Rev 67: 686723.
  • Neumüller, A.M., Konz, D., and Marahiel, M.A. (2001) The two-component regulatory system BacRS is associated with bacitracin ‘self-resistance’ of Bacillus licheniformis ATCC 10716. Eur J Biochem 268: 31803189.
  • Nishie, M., Sasaki, M., Nagao, J.-I., Zendo, T., Nakayama, J., and Sonomoto, K. (2011) Lantibiotic transporter requires cooperative functioning of the peptidase domain and the ATP binding domain. J Biol Chem 286: 1116311169.
  • Ohki, R., Tateno, K., Okada, Y., Okajima, H., Asai, K., Sadaie, Y., et al. (2003a) A bacitracin-resistant Bacillus subtilis gene encodes a homologue of the membrane-spanning subunit of the Bacillus licheniformis ABC transporter. J Bacteriol 185: 5159.
  • Ohki, R., Giyanto, Tateno, K., Masuyama, W., Moriya, S., Kobayashi, K., and Ogasawara, N. (2003b) The BceRS two-component regulatory system induces expression of the bacitracin transporter, BceAB, in Bacillus subtilis. Mol Microbiol 49: 11351144.
  • Okuda, K., Yanagihara, S., Shioya, K., Harada, Y., Nagao, J., Aso, Y., et al. (2008) Binding specificity of the lantibiotic-binding immunity protein NukH. Appl Environ Microbiol 74: 76137619.
  • Okuda, K., Yanagihara, S., Sugayama, T., Zendo, T., Nakayama, J., and Sonomoto, K. (2010) Functional significance of the E loop, a novel motif conserved in the lantibiotic immunity ATP-binding cassette transport systems. J Bacteriol 192: 28012808.
  • Otto, M., Peschel, A., and Götz, F. (1998) Producer self-protection against the lantibiotic epidermin by the ABC transporter EpiFEG of Staphylococcus epidermidis Tü3298. FEMS Microbiol Lett 166: 203211.
  • Ouyang, J., Tian, X.L., Versey, J., Wishart, A., and Li, Y.H. (2010) The BceABRS four-component system regulates the bacitracin-induced cell envelope stress response in Streptococcus mutans. Antimicrob Agents Chemother 54: 38953906.
  • Paik, S.H., Chakicherla, A., and Hansen, J.N. (1998) Identification and characterization of the structural and transporter genes for, and the chemical and biological properties of, sublancin 168, a novel lantibiotic produced by Bacillus subtilis 168. J Biol Chem 273: 2313423142.
  • Papadelli, M., Karsioti, A., Anastasiou, R., Georgalaki, M., and Tsakalidou, E. (2007) Characterization of the gene cluster involved in the biosynthesis of macedocin, the lantibiotic produced by Streptococcus macedonicus. FEMS Microbiol Lett 272: 7582.
  • Pazos, F., and Valencia, A. (2008) Protein co-evolution, co-adaptation and interactions. EMBO J 27: 26482655.
  • Perkins, H.R. (1969) Specificity of combination between mucopeptide precursors and vancomycin or ristocetin. Biochem J 111: 195205.
  • Peschel, A., Augustin, J., Kupke, T., Stevanovic, S., and Götz, F. (1993) Regulation of epidermin biosynthetic genes by EpiQ. Mol Microbiol 9: 3139.
  • Peschel, A., Schnell, N., Hille, M., Entian, K.D., and Götz, F. (1997) Secretion of the lantibiotics epidermin and gallidermin: sequence analysis of the genes gdmT and gdmH, their influence on epidermin production and their regulation by EpiQ. Mol Gen Genet 254: 312318.
  • Pietiäinen, M., François, P., Hyyryläinen, H.-L., Tangomo, M., Sass, V., Sahl, H.-G., et al. (2009) Transcriptome analysis of the responses of Staphylococcus aureus to antimicrobial peptides and characterization of the roles of vraDE and vraSR in antimicrobial resistance. BMC Genomics 10: 429.
  • Podlesek, Z., Comino, A., Herzog-Velikonja, B., Zgur-Bertok, D., Komel, R., and Grabnar, M. (1995) Bacillus licheniformis bacitracin-resistance ABC transporter: relationship to mammalian multidrug resistance. Mol Microbiol 16: 969976.
  • Qi, F., Chen, P., and Caufield, P.W. (1999) Functional analyses of the promoters in the lantibiotic mutacin II biosynthetic locus in Streptococcus mutans. Appl Environ Microbiol 65: 652658.
  • Qi, F., Chen, P., and Caufield, P.W. (2000) Purification and biochemical characterization of mutacin I from the group I strain of Streptococcus mutans, CH43, and genetic analysis of mutacin I biosynthesis genes. Appl Environ Microbiol 66: 32213229.
  • Qiao, M., and Saris, P.E. (1996) Evidence for a role of NisT in transport of the lantibiotic nisin produced by Lactococcus lactis N8. FEMS Microbiol Lett 144: 8993.
  • Ra, S.R., Qiao, M., Immonen, T., Pujana, I., and Saris, E.J. (1996) Genes responsible for nisin synthesis, regulation and immunity form a regulon of two operons and are induced by nisin in Lactoccocus lactis N8. Microbiology 142: 12811288.
  • Rietkötter, E., Hoyer, D., and Mascher, T. (2008) Bacitracin sensing in Bacillus subtilis. Mol Microbiol 68: 768785.
  • de Ruyter, P.G., Kuipers, O.P., Beerthuyzen, M.M., van Alen-Boerrigter, I., and de Vos, W.M. (1996) Functional analysis of promoters in the nisin gene cluster of Lactococcus lactis. J Bacteriol 178: 34343439.
  • Saier, M.H., Yen, M.R., Noto, K., Tamang, D.G., and Elkan, C. (2009) The transporter classification database: recent advances. Nucleic Acids Res 37: D274D278.
  • Siegers, K., Heinzmann, S., and Entian, K.D. (1996) Biosynthesis of lantibiotic nisin. Posttranslational modification of its prepeptide occurs at a multimeric membrane-associated lanthionine synthetase complex. J Biol Chem 271: 1229412301.
  • Skaugen, M., Andersen, E.L., Christie, V.H., and Nes, I.F. (2002) Identification, characterization, and expression of a second, bicistronic, operon involved in the production of lactocin S in Lactobacillus sakei L45. Appl Environ Microbiol 68: 720727.
  • Staroń, A., Finkeisen, D.E., and Mascher, T. (2011) Peptide antibiotic sensing and detoxification modules of Bacillus subtilis. Antimicrob Agents Chemother 55: 515525.
  • Stein, T., Borchert, S., Conrad, B., Feesche, J., Hofemeister, B., Hofemeister, J., and Entian, K.-D. (2002a) Two different lantibiotic-like peptides originate from the ericin gene cluster of Bacillus subtilis A1/3. J Bacteriol 184: 17031711.
  • Stein, T., Borchert, S., Kiesau, P., Heinzmann, S., Klöss, S., Klein, C., et al. (2002b) Dual control of subtilin biosynthesis and immunity in Bacillus subtilis. Mol Microbiol 44: 403416.
  • Stein, T., Heinzmann, S., Solovieva, I., and Entian, K.-D. (2003) Function of Lactococcus lactis nisin immunity genes nisI and nisFEG after coordinated expression in the surrogate host Bacillus subtilis. J Biol Chem 278: 8994.
  • Stein, T., Heinzmann, S., Düsterhus, S., Borchert, S., and Entian, K.-D. (2005) Expression and functional analysis of the subtilin immunity genes spaIFEG in the subtilin-sensitive host Bacillus subtilis MO1099. J Bacteriol 187: 822828.
  • Stoddard, G.W., Petzel, J.P., van Belkum, M.J., Kok, J., and McKay, L.L. (1992) Molecular analyses of the lactococcin A gene cluster from Lactococcus lactis subsp. lactis biovar diacetylactis WM4. Appl Environ Microbiol 58: 19521961.
  • Storm, D.R., and Strominger, J.L. (1973) Complex formation between bacitracin peptides and isoprenyl pyrophosphates. The specificity of lipid-peptide interactions. J Biol Chem 248: 39403945.
  • Takala, T., Koponen, O., Qiao, M., and Saris, P. (2004) Lipid-free NisI: interaction with nisin and contribution to nisin immunity via secretion. FEMS Microbiol Lett 237: 171177.
  • Tsuda, H., Yamashita, Y., Shibata, Y., Nakano, Y., and Koga, T. (2002) Genes involved in bacitracin resistance in Streptococcus mutans. Antimicrob Agents Chemother 46: 37563764.
  • Uguen, P., Hindre, T., Didelot, S., Marty, C., Haras, D., Le Pennec, J.P., et al. (2005) Maturation by LctT is required for biosynthesis of full-length lantibiotic lacticin 481. Appl Environ Microbiol 71: 562565.
  • Upton, M., Tagg, J.R., Wescombe, P., and Jenkinson, H.F. (2001) Intra-and interspecies signaling between Streptococcus salivarius and Streptococcus pyogenes mediated by SalA and SalA1 lantibiotic peptides. J Bacteriol 183: 39313938.
  • Vaughan, A., Eijsink, V.G.H., and Van Sinderen, D. (2003) Functional characterization of a composite bacteriocin locus from malt isolate Lactobacillus sakei 5. Appl Environ Microbiol 69: 71947203.
  • Wada, T., Noda, M., Kashiwabara, F., Jeon, H.J., Shirakawa, A., Yabu, H., et al. (2009) Characterization of four plasmids harboured in a Lactobacillus brevis strain encoding a novel bacteriocin, brevicin 925A, and construction of a shuttle vector for lactic acid bacteria and Escherichia coli. Microbiology 155: 17261737.
  • Wirawan, R.E., Klesse, N.A., Jack, R.W., and Tagg, J.R. (2006) Molecular and genetic characterization of a novel nisin variant produced by Streptococcus uberis. Appl Environ Microbiol 72: 11481156.
  • Yonezawa, H., and Kuramitsu, H.K. (2005) Genetic analysis of a unique bacteriocin, Smb, produced by Streptococcus mutans GS5. Antimicrob Agents Chemother 49: 541548.
  • Yoshida, Y., Matsuo, M., Oogai, Y., Kato, F., Nakamura, N., Sugai, M., and Komatsuzawa, H. (2011) Bacitracin sensing and resistance in Staphylococcus aureus. FEMS Microbiol Lett 320: 3339.