SEARCH

SEARCH BY CITATION

References

  • Arora, P., Goyal, A., Natarajan, V.T., Rajakumara, E., Verma, P., Gupta, R., et al. (2009) Mechanistic and functional insights into fatty acid activation in Mycobacterium tuberculosis. Nat Chem Biol 5: 166173.
  • Babbitt, P.C., Kenyon, G.L., Martin, B.M., Charest, H., Slyvestre, M., Scholten, J.D., et al. (1992) Ancestry of the 4-chlorobenzoate dehalogenase: analysis of amino acid sequence identities among families of acyl:adenyl ligases, enoyl-CoA hydratases/isomerases, and acyl-CoA thioesterases. Biochemistry 31: 55945604.
  • Bauchop, T., and Elsden, S.R. (1960) The growth of micro-organisms in relation to their energy supply. J Gen Microbiol 23: 457469.
  • Brock, M., and Buckel, W. (2004) On the mechanism of action of the antifungal agent propionate. Eur J Biochem 271: 32273241.
  • Camus, J.C., Pryor, M.J., Médigue, C., and Cole, S.T. (2002) Re-annotation of the genome sequence of Mycobacterium tuberculosis H37Rv. Microbiology 148: 29672973.
  • Capyk, J.K., D'Angelo, I., Strynadka, N.C., and Eltis, L.D. (2009) Characterization of 3-ketosteroid 9α-hydroxylase, a Rieske oxygenase in the cholesterol degradation pathway of Mycobacterium tuberculosis. J Biol Chem 284: 99379946.
  • Capyk, J.K., Casabon, I., Gruninger, R., Strynadka, N.C., and Eltis, L.D. (2011) Activity of 3-ketosteroid 9α-hydroxylase (KshAB) indicates cholesterol side chain and ring degradation occur simultaneously in Mycobacterium tuberculosis. J Biol Chem 286: 4071740724.
  • Chang, J.C., Miner, M.D., Pandey, A.K., Gill, W.P., Harik, N.S., Sassetti, C.M., and Sherman, D.R. (2009) igr genes and Mycobacterium tuberculosis cholesterol metabolism. J Bacteriol 191: 52325239.
  • Chang, K.H., Xiang, H., and Dunaway-Mariano, D. (1997) Acyl-adenylate motif of the acyl-adenylate/thioester-forming enzyme superfamily: a site-directed mutagenesis study with the Pseudomonas sp. strain CBS3 4-chlorobenzoate:coenzyme A ligase. Biochemistry 36: 1565015659.
  • Chen, H.P., Zhu, S.H., Casabon, I., Hallam, S.J., Crocker, F.H., Mohn, W.W., et al. (2012) Genomic and transcriptomic studies of an RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine)-degrading actinobacterium. Appl Environ Microbiol 78: 77987800.
  • Cole, S.T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., et al. (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393: 537544.
  • Cornish-Bowden, A. (1994) Analysis of Enzyme Kinetic Data. Oxford, New York: Oxford University Press.
  • Dresen, C., Lin, L.Y., D'Angelo, I., Tocheva, E.I., Strynadka, N., and Eltis, L.D. (2010) A flavin-dependent monooxygenase from Mycobacterium tuberculosis involved in cholesterol catabolism. J Biol Chem 285: 2226422275.
  • van der Geize, R., Hessels, G.I., van Gerwen, R., van der Meijden, P., and Dijkhuizen, L. (2001) Unmarked gene deletion mutagenesis of kstD, encoding 3-ketosteroid Δ1-dehydrogenase, in Rhodococcus erythropolis SQ1 using sacB as counter-selectable marker. FEMS Microbiol Lett 205: 197202.
  • van der Geize, R., Yam, K., Heuser, T., Wilbrink, M.H., Hara, H., Anderton, M.C., et al. (2007) A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proc Natl Acad Sci USA 104: 19471952.
  • van der Geize, R., Grommen, A.W.F., Hessels, G.I., Jacobs, A.A.C., and Dijkhuizen, L. (2011) The steroid catabolic pathway of the intracellular pathogen Rhodococcus equi is important for pathogenesis and a target for vaccine development. PLoS Pathog 7: e1002181.
  • Gocht, M., and Marahiel, M.A. (1994) Analysis of core sequences in the D-Phe activating domain of the multifunctional peptide synthetase TycA by site-directed mutagenesis. J Bacteriol 176: 26542662.
  • Griffin, J.E., Gawronski, J.D., DeJesus, M.A., Ioerger, T.R., Akerley, B.J., and Sassetti, C.M. (2011) High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLoS Pathog 7: e1002251.
  • Griffin, J.E., Pandey, A.K., Gilmore, S.A., Mizrahi, V., Mckinney, J.D., Bertozzi, C.R., and Sassetti, C.M. (2012) Cholesterol catabolism by Mycobacterium tuberculosis requires transcriptional and metabolic adaptations. Chem Biol 19: 218227.
  • Groot, P.H.E., Scholte, H.R., and Hulsmann, W.C. (1976) Fatty acid activation: specificity, localization, and function. Adv Lipid Res 14: 75126.
  • Hashimoto, S., and Hayakawa, S. (1977) Microbiological degradation of bile acids. Metabolites formed from 3-(3aα-hexahydro-7aβ-methyl-1,5-dioxoindan-4α-yl) propionic acid by Streptomyces rubescens. Biochem J 164: 715726.
  • Homolka, S., Niemann, S., Russell, D.G., and Rohde, K.H. (2010) Functional genetic diversity among Mycobacterium tuberculosis complex clinical isolates: delineation of conserved core and lineage-specific transcriptomes during intracellular survival. PLoS Pathog 6: e1000988.
  • Horinouchi, M., Hayashi, T., Koshino, H., Kurita, T., and Kudo, T. (2005) Identification of 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid, 4-hydroxy-2-oxohexanoic acid, and 2-hydroxyhexa-2,4-dienoic acid and related enzymes involved in testosterone degradation in Comamonas testosteroni TA441. Appl Environ Microbiol 71: 52755281.
  • Horinouchi, M., Hayashi, T., Koshino, H., and Kudo, T. (2006) ORF18-disrupted mutant of Comamonas testosteroni TA441 accumulates significant amounts of 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid and its derivatives after incubation with steroids. J Steroid Biochem Mol Biol 101: 7884.
  • Horswill, A.R., and Escalante-Semerena, J.C. (2002) Characterization of the propionyl-CoA synthetase (PrpE) enzyme of Salmonella enterica: residue Lys592 is required for propionyl-AMP synthesis. Biochemistry 41: 23792387.
  • Hu, Y., van der Geize, R., Besra, G.S., Gurcha, S.S., Liu, A., Rohde, M., et al. (2010) 3-Ketosteroid 9α-hydroxylase is an essential factor in the pathogenesis of Mycobacterium tuberculosis. Mol Microbiol 75: 107121.
  • Johnston, J.B., Ouellet, H., and Ortiz de Montellano, P.R. (2010) Functional redundancy of steroid C26-monooxygenase activity in Mycobacterium tuberculosis revealed by biochemical and genetic analyses. J Biol Chem 285: 3635236360.
  • Jung, J.W., An, J.H., Na, K.B., Kim, Y.S., and Lee, W. (2000) The active site and substrates binding mode of malonyl-CoA synthetase determined by transferred nuclear Overhauser effect spectroscopy, site-directed mutagenesis, and comparative modeling studies. Protein Sci 9: 12941303.
  • Kapust, R.B., Tözsér, J., Fox, J.D., Anderson, D.E., Cherry, S., Copeland, T.D., and Waugh, D.S. (2001) Tobacco etch virus protease: mechanism of autolysis and rational design of stable mutants with wild-type catalytic proficiency. Protein Eng 14: 9931000.
  • Kendall, S.L., Burgess, P., Balhana, R., Withers, M., ten Bokum, A., Lott, J.S., et al. (2010) Cholesterol utilization in mycobacteria is controlled by two TetR-type transcriptional regulators: kstR and kstR2. Microbiology 156: 13621371.
  • Kim, M.J., Wainwright, H.C., Locketz, M., Bekker, L.G., Walther, G.B., Dittrich, C., et al. (2010) Caseation of human tuberculosis granulomas correlates with elevated host lipid metabolism. EMBO Mol Med 2: 258274.
  • Lack, N.A., Yam, K.C., Lowe, E.D., Horsman, G.P., Owen, R.L., Sim, E., and Eltis, L.D. (2010) Characterization of a carbon-carbon hydrolase from Mycobacterium tuberculosis involved in cholesterol metabolism. J Biol Chem 285: 434443.
  • Lee, S.S., and Sih, C.J. (1967) Mechanisms of steroid oxidation by microorganisms. XII. Metabolism of hexahydroindanpropionic acid derivatives. Biochemistry 6: 13951403.
  • McKinney, J.D., Höner zu Bentrup, K., Muñoz-Elías, E.J., Miczak, A., Chen, B., Chan, W.T., et al. (2000) Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406: 735738.
  • McLeod, M.P., Warren, R.L., Hsiao, W.W., Araki, N., Myhre, M., Fernandes, C., et al. (2006) The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc Natl Acad Sci USA 103: 1558215587.
  • Man, W.J., Li, Y., O'Connor, C.D., and Wilton, D.C. (1995) The binding of propionyl-CoA and carboxymethyl-CoA to Escherichia coli citrate synthase. Biochim Biophys Acta 1250: 6975.
  • Miclo, A., and Germain, P. (1990) Catabolism of methylperhydroindanedione propionate by Rhodococcus equi: evidence of a MEPHIP-reductase activity. Appl Microbiol Biotechnol 32: 594599.
  • Mohn, W.W., van der Geize, R., Stewart, G.R., Okamoto, S., Liu, J., Dijkhuizen, L., and Eltis, L.D. (2008) The actinobacterial mce4 locus encodes a steroid transporter. J Biol Chem 283: 3536835374.
  • Mohn, W.W., Wilbrink, M.H., Casabon, I., Stewart, G.R., Liu, J., van der Geize, R., and Eltis, L.D. (2012) A gene cluster encoding cholate catabolism in Rhodococcus spp. J Bacteriol doi: 10.1128/JB.01169-12.
  • Nakashima, N., and Tamura, T. (2004) Isolation and characterization of a rolling-circle-type plasmid from Rhodococcus erythropolis and application of the plasmid to multiple-recombinant-protein expression. Appl Environ Microbiol 70: 55575568.
  • Nesbitt, N.M., Yang, X., Fontán, P., Kolesnikova, I., Smith, I., Sampson, N.S., and Dubnau, E. (2010) A thiolase of Mycobacterium tuberculosis is required for virulence and production of androstenedione and androstadienedione from cholesterol. Infect Immun 78: 275282.
  • Ouellet, H., Johnston, J.B., and Ortiz de Montellano, P.R. (2011) Cholesterol catabolism as a therapeutic target in Mycobacterium tuberculosis. Trends Microbiol 19: 530539.
  • Pandey, A.K., and Sassetti, C.M. (2008) Mycobacterial persistence requires the utilization of host cholesterol. Proc Natl Acad Sci USA 105: 43764380.
  • Parke, D., and Ornston, L.N. (2004) Toxicity caused by hydroxycinnamoyl-coenzyme A thioester accumulation in mutants of Acinetobacter sp. strain ADP1. Appl Environ Microbiol 70: 29742983.
  • Rengarajan, J., Bloom, B.R., and Rubin, E.J. (2005) Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. Proc Natl Acad Sci USA 102: 83278332.
  • Rocco, C.J., and Escalante-Semerena, J.C. (2010) In Salmonella enterica, 2-methylcitrate blocks gluconeogenesis. J Bacteriol 192: 771778.
  • Russell, D.G. (2007) Who puts the tubercle in tuberculosis? Nat Rev Microbiol 5: 3947.
  • Russell, D.G., VanderVen, B.C., Lee, W., Abramovitch, R.B., Kim, M.J., Homolka, S., et al. (2010) Mycobacterium tuberculosis wears what it eats. Cell Host Microbe 8: 6876.
  • Sambrook, J., and Russell, D.W. (2001) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  • Sassetti, C.M., and Rubin, E.J. (2003) Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci USA 100: 1298912994.
  • Schäfer, A., Tauch, A., Jäger, W., Kalinowski, J., Thierbach, G., and Pühler, A. (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145: 6973.
  • Schnappinger, D., Ehrt, S., Voskuil, M.I., Liu, Y., Mangan, J.A., Monahan, I.M., et al. (2003) Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J Exp Med 198: 693704.
  • Seto, M., Kimbara, K., Shimura, M., Hatta, T., Fukuda, M., and Yano, K. (1995) A novel transformation of polychlorinated biphenyls by Rhodococcus sp. strain RHA1. Appl Environ Microbiol 61: 33533358.
  • Starai, V.J., Celic, I., Cole, R.N., Boeke, J.D., and Escalante-Semerena, J.C. (2002) Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine. Science 298: 23902392.
  • Swain, K., Casabon, I., Eltis, L.D., and Mohn, W.W. (2012) Two transporters essential for the reassimilation of novel cholate metabolites by Rhodococcus jostii RHA1. J Bacteriol doi: 10.1128/JB.01167-12.
  • Thomas, S.T., VanderVen, B.C., Sherman, D.R., Russell, D.G., and Sampson, N.S. (2011) Pathway profiling in Mycobacterium tuberculosis: elucidation of a cholesterol-derived catabolite and the enzymes that catalyze its metabolism. J Biol Chem 286: 4366843678.
  • Trivedi, O.A., Arora, P., Sridharan, V., Tickoo, R., Mohanty, D., and Gokhale, R.S. (2004) Enzymic activation and transfer of fatty acids as acyl-adenylates in mycobacteria. Nature 428: 441445.
  • WHO (2011) Global Tuberculosis Control: WHO Report 2011. Geneva, Switzerland: World Health Organization, pp. 373.
  • Wilbrink, M.H., Petrusma, M., Dijkhuizen, L., and van der Geize, R. (2011) FadD19 of Rhodococcus rhodochrous DSM43269: a steroid-CoA ligase essential for degradation of C24-branched sterol side chains. Appl Environ Microbiol 77: 44554464.
  • Xu, H., Hegde, S.S., and Blanchard, J.S. (2011) The reversible acetylation and inactivation of Mycobacterium tuberculosis acetyl-CoA synthetase is dependent on cAMP. Biochemistry 50: 58835892.
  • Yam, K.C., D'Angelo, I., Kalscheuer, R., Zhu, H., Wang, J.X., Snieckus, V., et al. (2009) Studies of a ring-cleaving dioxygenase illuminate the role of cholesterol metabolism in the pathogenesis of Mycobacterium tuberculosis. PLoS Pathog 5: e1000344.
  • Yang, X., Dubnau, E., Smith, I., and Sampson, N.S. (2007) Rv1106c from Mycobacterium tuberculosis is a 3β-hydroxysteroid dehydrogenase. Biochemistry 46: 90589067.