SEARCH

SEARCH BY CITATION

References

  • Bauer, F., Matsuyama, A., Candiracci, J., Dieu, M., Scheliga, J., Wolf, D.A., et al. (2012) Translational control of cell division by elongator. Cell Rep 1: 424433.
  • Beeser, A.E., and Cooper, T.G. (1999) Control of nitrogen catabolite repression is not affected by the tRNAGln-CUU mutation, which results in constitutive pseudohyphal growth of Saccharomyces cerevisiae. J Bacteriol 181: 24722476.
  • Buchan, J.R., and Stansfield, I. (2007) Halting a cellular production line: responses to ribosomal pausing during translation. Biol Cell 99: 475487.
  • Chen, C., Huang, B., Eliasson, M., Ryden, P., and Bystrom, A.S. (2011) Elongator complex influences telomeric gene silencing and DNA damage response by its role in wobble uridine tRNA modification. PLoS Genet 7: e1002258.
  • Christianson, T.W., Sikorski, R.S., Dante, M., Shero, J.H., and Hieter, P. (1992) Multifunctional yeast high-copy-number shuttle vectors. Gene 110: 119122.
  • Ciandrini, L., Stansfield, I., and Romano, M.C. (2010) Role of the particle's stepping cycle in an asymmetric exclusion process: A model of mRNA translation. Phys Rev E Stat Nonlin Soft Matter Phys 81: 051904.
  • Dickinson, J.R. (1996) ‘Fusel’ alcohols induce hyphal-like extensions and pseudohyphal formation in yeasts. Microbiology 142 (Part 6): 13911397.
  • Dickinson, J.R. (2008) Filament formation in Saccharomyces cerevisiae – a review. Folia Microbiol (Praha) 53: 314.
  • Doma, M., and Parker, R. (2006) Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation. Nature 440: 561564.
  • Dong, H., Nilsson, L., and Kurland, C.G. (1996) Co-variation of tRNA abundance and codon usage in Escherichia coli at different growth rates. J Mol Biol 260: 649663.
  • Forbes, E.M., Nieduszynska, S.R., Brunton, F.K., Gibson, J., Glover, L.A., and Stansfield, I. (2007) Control of gag-pol gene expression in the Candida albicans retrotransposon Tca2. BMC Mol Biol 8: 94.
  • Gimeno, C.J., Ljungdahl, P.O., Styles, C.A., and Fink, G.R. (1992) Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68: 10771090.
  • Goldstein, A.L., and McCusker, J.H. (1999) Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15: 15411553.
  • Grunberg-Manago, M. (1999) Messenger RNA stability and its role in control of gene expression in bacteria and phages. Annu Rev Genet 33: 193227.
  • Hayase, Y., Jahn, M., Rogers, M.J., Sylvers, L.A., Koizumi, M., Inoue, H., et al. (1992) Recognition of bases in Escherichia coli tRNA(gln) by glutaminyl-tRNA synthetase: a complete identity set. EMBO J 11: 41594165.
  • Hill, D.E., and Struhl, K. (1986) A rapid method for determining tRNA charging levels in vivo: analysis of yeast mutants defective in the general control of amino acid biosynthesis. Nucleic Acids Res 14: 1004510051.
  • Huang, B., Johansson, M.J., and Bystrom, A.S. (2005) An early step in wobble uridine tRNA modification requires the elongator complex. RNA 11: 424436.
  • Ikemura, T. (1982) Correlation between the abundance of yeast transfer RNAs and the occurrence of the respective codons in protein genes. Differences in synonymous codon choice patterns of yeast and Escherichia coli with reference to the abundance of isoaccepting transfer RNAs. J Mol Biol 158: 573597.
  • Jahn, M., Rogers, M.J., and Soll, D. (1991) Anticodon and acceptor stem nucleotides in tRNA(gln) are major recognition elements for E. coli glutaminyl-tRNA synthetase. Nature 352: 258260.
  • Johansson, M.J., Esberg, A., Huang, B., Bjork, G.R., and Bystrom, A.S. (2008) Eukaryotic wobble uridine modifications promote a functionally redundant decoding system. Mol Cell Biol 28: 33013312.
  • Keiler, K.C., Waller, P.R., and Sauer, R.T. (1996) Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science 271: 990993.
  • Klausner, R.D., Rouault, T.A., and Harford, J.B. (1993) Regulating the fate of mRNA: the control of cellular iron metabolism. Cell 72: 1928.
  • Komar, A.A., Lesnik, T., and Reiss, C. (1999) Synonymous codon substitutions affect ribosome traffic and protein folding during in vitro translation. FEBS Lett 462: 387391.
  • Kuhn, L.C., and Hentze, M.W. (1992) Coordination of cellular iron metabolism by post-transcriptional gene regulation. J Inorg Biochem 47: 183195.
  • Leskiw, B.K., Lawlor, E.J., Fernandez-Abalos, J.M., and Chater, K.F. (1991) TTA codons in some genes prevent their expression in a class of developmental, antibiotic-negative, Streptomyces mutants. Proc Natl Acad Sci USA 88: 24612465.
  • Letzring, D.P., Dean, K.M., and Grayhack, E.J. (2010) Control of translation efficiency in yeast by codon–anticodon interactions. RNA 16: 25162528.
  • Li, W., Wu, J., Tao, W., Zhao, C., Wang, Y., He, X., et al. (2007) A genetic and bioinformatic analysis of Streptomyces coelicolor genes containing TTA codons, possible targets for regulation by a developmentally significant tRNA. FEMS Microbiol Lett 266: 2028.
  • Liu, H., Styles, C.A., and Fink, G.R. (1996) Saccharomyces cerevisiae S288C has a mutation in FLO8, a gene required for filamentous growth. Genetics 144: 967978.
  • Lorenz, M.C., and Heitman, J. (1997) Yeast pseudohyphal growth is regulated by GPA2, a G protein alpha homolog. EMBO J 16: 70087018.
  • Martinez-Anaya, C., Dickinson, J.R., and Sudbery, P.E. (2003) In yeast, the pseudohyphal phenotype induced by isoamyl alcohol results from the operation of the morphogenesis checkpoint. J Cell Sci 116: 34233431.
  • Merrick, M.J. (1976) A morphological and genetic mapping study of bald colony mutants of Streptomyces coelicolor. J Gen Microbiol 96: 299315.
  • Murray, L.E., Rowley, N., Dawes, I.W., Johnston, G.C., and Singer, R.A. (1998) A yeast glutamine tRNA signals nitrogen status for regulation of dimorphic growth and sporulation. Proc Natl Acad Sci USA 95: 86198624.
  • Oliveira, C.C., and McCarthy, J.E. (1995) The relationship between eukaryotic translation and mRNA stability. A short upstream open reading frame strongly inhibits translational initiation and greatly accelerates mRNA degradation in the yeast Saccharomyces cerevisiae. J Biol Chem 270: 89368943.
  • Oliveira, C.C., Goossen, B., Zanchin, N.I., McCarthy, J.E., Hentze, M.W., and Stripecke, R. (1993) Translational repression by the human iron-regulatory factor (IRF) in Saccharomyces cerevisiae. Nucleic Acids Res 21: 53165322.
  • Pan, X., and Heitman, J. (1999) Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Mol Cell Biol 19: 48744887.
  • Percudani, R., Pavesi, A., and Ottonello, S. (1997) Transfer RNA gene redundancy and translational selection in Saccharomyces cerevisiae. J Mol Biol 268: 322330.
  • Pure, G.A., Robinson, G.W., Naumovski, L., and Friedberg, E.C. (1985) Partial suppression of an ochre mutation in Saccharomyces cerevisiae by multicopy plasmids containing a normal yeast tRNAGln gene. J Mol Biol 183: 3142.
  • Rato, C., Amirova, S.R., Bates, D.G., Stansfield, I., and Wallace, H.M. (2011) Translational recoding as a feedback controller: systems approaches reveal polyamine-specific effects on the antizyme ribosomal frameshift. Nucleic Acids Res 39: 45874597.
  • Rosenberg, A.H., Goldman, E., Dunn, J.J., Studier, F.W., and Zubay, G. (1993) Effects of consecutive AGG codons on translation in Escherichia coli, demonstrated with a versatile codon test system. J Bacteriol 175: 716722.
  • Sambrook, J., and Russell, D.W. (2001) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  • Santos, M.A., Perreau, V.M., and Tuite, M.F. (1996) Transfer RNA structural change is a key element in the reassignment of the CUG codon in Candida albicans. EMBO J 15: 50605068.
  • Schroder, M., Chang, J.S., and Kaufman, R.J. (2000) The unfolded protein response represses nitrogen-starvation induced developmental differentiation in yeast. Genes Dev 14: 29622975.
  • Schultz, D.W., and Yarus, M. (1994) tRNA structure and ribosomal function. I. tRNA nucleotide 27–43 mutations enhance first position wobble. J Mol Biol 235: 13811394.
  • Sharp, P.M., and Li, W.H. (1987) The codon adaptation index – a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 15: 12811295.
  • Takano, E., Tao, M., Long, F., Bibb, M.J., Wang, L., Li, W., et al. (2003) A rare leucine codon in adpA is implicated in the morphological defect of bldA mutants of Streptomyces coelicolor. Mol Microbiol 50: 475486.
  • Toda, T., Uno, I., Ishikawa, T., Powers, S., Kataoka, T., Broek, D., et al. (1985) In yeast, RAS proteins are controlling elements of adenylate cyclase. Cell 40: 2736.
  • Tuller, T., Carmi, A., Vestsigian, K., Navon, S., Dorfan, Y., Zaborske, J., et al. (2010) An evolutionarily conserved mechanism for controlling the efficiency of protein translation. Cell 141: 344354.
  • Varshney, U., Lee, C.P., and RajBhandary, U.L. (1991) Direct analysis of aminoacylation levels of tRNAs in vivo. Application to studying recognition of Escherichia coli initiator tRNA mutants by glutaminyl-tRNA synthetase. J Biol Chem 266: 2471224718.
  • Vega Laso, M.R., Zhu, D., Sagliocco, F., Brown, A.J., Tuite, M.F., and McCarthy, J.E. (1993) Inhibition of translational initiation in the yeast Saccharomyces cerevisiae as a function of the stability and position of hairpin structures in the mRNA leader. J Biol Chem 268: 64536462.
  • Wach, A., Brachat, A., Pohlmann, R., and Philippsen, P. (1994) New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10: 17931808.
  • Weiss, W.A., Edelman, I., Culbertson, M.R., and Friedberg, E.C. (1987) Physiological levels of normal tRNA(CAGGln) can effect partial suppression of amber mutations in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA 84: 80318034.
  • Williams, I., Richardson, J., Starkey, A., and Stansfield, I. (2004) Genome-wide prediction of stop codon readthrough during translation in the yeast Saccharomyces cerevisiae. Nucleic Acids Res 32: 66056616.