SEARCH

SEARCH BY CITATION

References

  • Al Refaii, A., and Alix, J.H. (2009) Ribosome biogenesis is temperature-dependent and delayed in Escherichia coli lacking the chaperones DnaK or DnaJ. Mol Microbiol 71: 748762.
  • Albrechtsen, B., Squires, C.L., Li, S., and Squires, C. (1990) Antitermination of characterized transcriptional terminators by the Escherichia coli rrnG leader region. J Mol Biol 213: 123134.
  • Balzer, M., and Wagner, R. (1998) Mutations in the leader region of ribosomal RNA operons cause structurally defective 30S ribosomes as revealed by in vivo structural probing. J Mol Biol 276: 547557.
  • Besancon, W., and Wagner, R. (1999) Characterization of transient RNA–RNA interactions important for the facilitated structure formation of bacterial ribosomal 16S RNA. Nucleic Acids Res 27: 43534362.
  • Beuth, B., Pennell, S., Arnvig, K.B., Martin, S.R., and Taylor, I.A. (2005) Structure of a Mycobacterium tuberculosis NusA–RNA complex. EMBO J 24: 35763587.
  • Bochner, B.R., Huang, H.C., Schieven, G.L., and Ames, B.N. (1980) Positive selection for loss of tetracycline resistance. J Bacteriol 143: 926933.
  • Bubunenko, M., Baker, T., and Court, D.L. (2007) Essentiality of ribosomal and transcription antitermination proteins analyzed by systematic gene replacement in Escherichia coli. J Bacteriol 189: 28442853.
  • Conant, C.R., Goodarzi, J., Weitzel, S.E., and von Hippel, P.H. (2008) The antitermination activity of bacteriophage lambda N protein is controlled by the kinetics of an RNA-looping-facilitated interaction with the transcription complex. J Mol Biol 384: 87108.
  • Condon, C., French, S., Squires, C., and Squires, C.L. (1993) Depletion of functional ribosomal RNA operons in Escherichia coli causes increased expression of the remaining intact copies. EMBO J 12: 43054315.
  • Condon, C., Squires, C., and Squires, C.L. (1995) Control of rRNA transcription in Escherichia coli. Microbiol Rev 59: 623645.
  • Court, D.L. (1993) RNA processing and degradation by RNase III. In Control of Messenger RNA Stability. Belasco, J. , and Brawerman, G. (eds). New York: Academic Press, pp. 71116.
  • Court, D.L., Swaminathan, S., Yu, D., Wilson, H., Baker, T., Bubunenko, M., et al. (2003) Mini-lambda: a tractable system for chromosome and BAC engineering. Gene 315: 6369.
  • Court, D.L., Oppenheim, A.B., and Adhya, S.L. (2007) A new look at bacteriophage lambda genetic networks. J Bacteriol 189: 298304.
  • Craven, M.G., and Friedman, D.I. (1991) Analysis of the Escherichia coli nusA10(Cs) allele: relating nucleotide changes to phenotypes. J Bacteriol 173: 14851491.
  • Das, A. (1993) Control of transcription termination by RNA-binding proteins. Annu Rev Biochem 62: 893930.
  • Deutscher, M.P. (2009) Maturation and degradation of ribosomal RNA in bacteria. Prog Mol Biol Transl Sci 85: 369391.
  • DeVito, J., and Das, A. (1994) Control of transcription processivity in phage λ: Nus factors strengthen the termination-resistant state of RNA polymerase induced by N antiterminator. Proc Natl Acad Sci USA 91: 86608664.
  • Dunn, J.J., and Studier, F.W. (1973) T7 early RNAs and Escherichia coli ribosomal RNAs are cut from large precursor RNAs in vivo by ribonuclease III. Proc Natl Acad Sci USA 70: 32963300.
  • Frauenfeld, J., Gumbart, J., Sluis, E.O., Funes, S., Gartmann, M., Beatrix, B., et al. (2011) Cryo-EM structure of the ribosome–SecYE complex in the membrane environment. Nat Struct Mol Biol 18: 614621.
  • French, S.L., and Miller, O.L. (1989) Transcription mapping of the Escherichia coli chromosome by electron microscopy. J Bacteriol 171: 42074216.
  • Friedman, D.I., and Court, D.L. (1995) Transcription antitermination: the lambda paradigm updated. Mol Microbiol 18: 191200.
  • Friedman, D.I., Schauer, A.T., Baumann, M.R., Baron, L.S., and Adhya, S.L. (1981) Evidence that ribosomal protein S10 participates in control of transcription termination. Proc Natl Acad Sci USA 78: 11151118.
  • Gegenheimer, P., and Apirion, D. (1975) Escherichia coli ribosomal ribonucleic acids are not cut from an intact precursor molecule. J Biol Chem 250: 24072409.
  • Gegenheimer, P., and Apirion, D. (1978) Processing of rRNA by RNAase P: spacer tRNAs are linked to 16S rRNA in an RNAase P RNAase III mutant strain of E. coli. Cell 15: 527539.
  • Greenblatt, J., Nodwell, J.R., and Mason, S.W. (1993) Transcriptional antitermination. Nature 364: 401406.
  • Greive, S.J., Lins, A.F., and von Hippel, P.H. (2005) Assembly of an RNA–protein complex. Binding of NusB and NusE (S10) proteins to boxA RNA nucleates the formation of the antitermination complex involved in controlling rRNA transcription in Escherichia coli. J Biol Chem 280: 3639736408.
  • Heinrich, T., Condon, C., Pfeiffer, T., and Hartmann, R.K. (1995) Point mutations in the leader boxA of a plasmid-encoded Escherichia coli rrnB operon cause defective antitermination in vivo. J Bacteriol 177: 37933800.
  • Kaczanowska, M., and Ryden-Aulin, M. (2007) Ribosome biogenesis and the translation process in Escherichia coli. Microbiol Mol Biol Rev 71: 477494.
  • Klumpp, S., and Hwa, T. (2008) Stochasticity and traffic jams in the transcription of ribosomal RNA: intriguing role of termination and antitermination. Proc Natl Acad Sci USA 105: 1815918164.
  • Lee, C., and Beckwith, J. (1986) Cotranslational and posttranslational protein translocation in prokaryotic systems. Annu Rev Cell Biol 2: 315336.
  • Li, J., Horwitz, R., McCracken, S., and Greenblatt, J. (1992) NusG, a new Escherichia coli elongation factor involved in transcriptional antitermination by the N protein of phage lambda. J Biol Chem 267: 60126019.
  • Li, S.C., Squires, C.L., and Squires, C. (1984) Antitermination of E. coli rRNA transcription is caused by a control region segment containing lambda nut-like sequences. Cell 38: 851860.
  • Lindahl, L. (1975) Intermediates and time kinetics of the in vivo assembly of Escherichia coli ribosomes. J Mol Biol 92: 1537.
  • Luo, X., Hsiao, H.H., Bubunenko, M., Weber, G., Court, D.L., Gottesman, M.E., et al. (2008) Structural and functional analysis of the E. coli NusB–S10 transcription antitermination complex. Mol Cell 32: 791802.
  • Mason, S.W., Li, J., and Greenblatt, J. (1992) Direct interaction between two Escherichia coli transcription antitermination factors, NusB and ribosomal protein S10. J Mol Biol 223: 5566.
  • Miller, J.H. (1972) Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  • Morgan, E.A. (1986) Antitermination mechanisms in rRNA operons of Escherichia coli. J Bacteriol 168: 15.
  • de Narvaez, C.C., and Schaup, H.W. (1979) In vivo transcriptionally coupled assembly of Escherichia coli ribosomal subunits. J Mol Biol 134: 122.
  • Nierhaus, K.H. (2004) Assembly of the prokaryotic ribosome. In Protein Synthesis and Ribosome Structure. Nierhaus, K.H. , and Wilson, D.N. (eds). Weinheim, Germany: Wiley-VCH, pp. 85105.
  • Nodwell, J.R., and Greenblatt, J. (1993) Recognition of boxA antiterminator RNA by the E. coli antitermination factors NusB and ribosomal protein S10. Cell 72: 261268.
  • Noller, H.F. (1993) Peptidyl transferase: protein, ribonucleoprotein, or RNA? J Bacteriol 175: 52975300.
  • Olson, E.R., Tomich, C.S., and Friedman, D.I. (1984) The NusA recognition site. Alteration in its sequence or position relative to upstream translation interferes with the action of the N antitermination function of phage lambda. J Mol Biol 180: 10531063.
  • Pan, T., Artsimovitch, I., Fang, X.W., Landick, R., and Sosnick, T.R. (1999) Folding of a large ribozyme during transcription and the effect of the elongation factor NusA. Proc Natl Acad Sci USA 96: 95459550.
  • Pfeiffer, T., and Hartmann, R.K. (1997) Role of the spacer boxA of Escherichia coli ribosomal RNA operons in efficient 23S rRNA synthesis in vivo. J Mol Biol 265: 385393.
  • Plumbridge, J.A., and Springer, M. (1983) Organization of the Escherichia coli chromosome around the genes for translation initiation factor IF2 (infB) and a transcription termination factor (nusA). J Mol Biol 167: 227243.
  • Prasch, S., Jurk, M., Washburn, R.S., Gottesman, M.E., Wohrl, B.M., and Rosch, P. (2009) RNA-binding specificity of E. coli NusA. Nucleic Acids Res 37: 47364742.
  • Quan, S., Zhang, N., French, S., and Squires, C.L. (2005) Transcriptional polarity in rRNA operons of Escherichia coli nusA and nusB mutant strains. J Bacteriol 187: 16321638.
  • Rajapandi, T., and Oliver, D. (1994) ssaD1, a suppressor of secA51(Ts) that renders growth of Escherichia coli cold sensitive, is an early amber mutation in the transcription factor gene nusB. J Bacteriol 176: 44444447.
  • Rene, O., and Alix, J.H. (2011) Late steps of ribosome assembly in E. coli are sensitive to a severe heat stress but are assisted by the HSP70 chaperone machine. Nucleic Acids Res 39: 18551867.
  • Roberts, J.W., Shankar, S., and Filter, J.J. (2008) RNA polymerase elongation factors. Annu Rev Microbiol 62: 211233.
  • Schäferkordt, J., and Wagner, R. (2001) Effects of base change mutations within an Escherichia coli ribosomal RNA leader region on rRNA maturation and ribosome formation. Nucleic Acids Res 29: 33943403.
  • Schweimer, K., Prasch, S., Sujatha, P.S., Bubunenko, M., Gottesman, M.E., and Rosch, P. (2011) NusA interaction with the α subunit of E. coli RNA polymerase is via the UP element site and releases autoinhibition. Structure 19: 945954.
  • Sharrock, R.A., Gourse, R.L., and Nomura, M. (1985) Defective antitermination of rRNA transcription and derepression of rRNA and tRNA synthesis in the nusB5 mutant of Escherichia coli. Proc Natl Acad Sci USA 82: 52755279.
  • Shiba, K., Ito, K., and Yura, T. (1986a) Suppressors of the secY24 mutation: identification and characterization of additional ssy genes in Escherichia coli. J Bacteriol 166: 849856.
  • Shiba, K., Ito, K., Nakamura, Y., Dondon, J., and Grunberg-Manago, M. (1986b) Altered translation initiation factor 2 in the cold-sensitive ssyG mutant affects protein export in Escherichia coli. EMBO J 5: 30013006.
  • Squires, C.L., Greenblatt, J., Li, J., Condon, C., and Squires, C.L. (1993) Ribosomal RNA antitermination in vitro: requirement for Nus factors and one or more unidentified cellular components. Proc Natl Acad Sci USA 90: 970974.
  • Srivastava, A.K., and Schlessinger, D. (1990) Mechanism and regulation of bacterial ribosomal RNA processing. Annu Rev Microbiol 44: 105129.
  • Stagno, J.R., Altieri, A.S., Bubunenko, M., Tarasov, S.G., Li, J., Court, D.L., et al. (2011) Structural basis for RNA recognition by NusB and NusE in the initiation of transcription antitermination. Nucleic Acids Res 39: 78037815.
  • Taura, T., Ueguchi, C., Shiba, K., and Ito, K. (1992) Insertional disruption of the nusB (ssyB) gene leads to cold-sensitive growth of Escherichia coli and suppression of the secY24 mutation. Mol Gen Genet 234: 429432.
  • Theissen, G., Behrens, S.E., and Wagner, R. (1990) Functional importance of the Escherichia coli ribosomal RNA leader boxA sequence for post-transcriptional events. Mol Microbiol 4: 16671678.
  • Torres, M., Condon, C., Balada, J.M., Squires, C., and Squires, C.L. (2001) Ribosomal protein S4 is a transcription factor with properties remarkably similar to NusA, a protein involved in both non-ribosomal and ribosomal RNA antitermination. EMBO J 20: 38113820.
  • Torres, M., Balada, J.M., Zellars, M., Squires, C., and Squires, C.L. (2004) In vivo effect of NusB and NusG on rRNA transcription antitermination. J Bacteriol 186: 13041310.
  • Tu, C., Zhou, X., Tropea, J., Austin, B., Waugh, D., Court, D., and Ji, X. (2009) Structure of ERA in complex with the 3′ end of 16S rRNA: implications for ribosome biogenesis. Proc Natl Acad Sci USA 106: 1484314848.
  • Vogel, U., and Jensen, K.F. (1997) NusA is required for ribosomal antitermination and for modulation of the transcription elongation rate of both antiterminated RNA and mRNA. J Biol Chem 272: 1226512271.
  • Wilson, H.R., Yu, D., Peters, H.K., 3rd, Zhou, J.G., and Court, D.L. (2002) The global regulator RNase III modulates translation repression by the transcription elongation factor N. EMBO J 21: 41544161.
  • Wilson, H.R., Zhou, J.G., Yu, D., and Court, D.L. (2004) Translation repression by an RNA polymerase elongation complex. Mol Microbiol 53: 821828.
  • Wong, T., Sosnick, T.R., and Pan, T. (2005) Mechanistic insights on the folding of a large ribozyme during transcription. Biochemistry 44: 75357542.
  • Woodson, S.A. (2008) RNA folding and ribosome assembly. Curr Opin Chem Biol 12: 667673.
  • Young, R.A., and Steitz, J.A. (1978) Complementary sequences 1700 nucleotides apart form a ribonuclease III cleavage site in Escherichia coli ribosomal precursor RNA. Proc Natl Acad Sci USA 75: 35933597.
  • Yu, D., Ellis, H.M., Lee, E.C., Jenkins, N.A., Copeland, N.G., and Court, D.L. (2000) An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci USA 97: 59785983.
  • Zellars, M., and Squires, C.L. (1999) Antiterminator-dependent modulation of transcription elongation rates by NusB and NusG. Mol Microbiol 32: 12961304.
  • Zhou, Y., Mah, T.F., Yu, Y.T., Mogridge, J., Olson, E.R., Greenblatt, J., and Friedman, D.I. (2001) Interactions of an Arg-rich region of transcription elongation protein NusA with NUT RNA: implications for the order of assembly of the lambda N antitermination complex in vivo. J Mol Biol 310: 3349.