SEARCH

SEARCH BY CITATION

References

  • Bernheimer, H.P. (1979) Lysogenic pneumococci and their bacteriophages. J Bacteriol 138: 618624.
  • Bossi, L., Fuentes, J.A., Mora, G., and Figueroa-Bossi, N. (2003) Prophage contribution to bacterial population dynamics. J Bacteriol 185: 64676471.
  • Briers, Y., Peeters, L.M., Volckaert, G., and Lavigne, R. (2011) The lysis cassette of bacteriophage varphiKMV encodes a signal-arrest-release endolysin and a pinholin. Bacteriophage 1: 2530.
  • Briese, T., and Hakenbeck, R. (1985) Interaction of the pneumococcal amidase with lipoteichoic acid and choline. Eur J Biochem 146: 417427.
  • Briles, E.B., and Tomasz, A. (1970) Radioautographic evidence for equatorial wall growth in a Gram-positive bacterium. Segregation of choline-3H-labeled teichoic acid. J Cell Biol 47: 786790.
  • Briles, E.B., and Tomasz, A. (1973) Pneumococcal Forssman antigen. A choline-containing lipoteichoic acid. J Biol Chem 248: 63946397.
  • Calamita, H.G., and Doyle, R.J. (2002) Regulation of autolysins in teichuronic acid-containing Bacillus subtilis cells. Mol Microbiol 44: 601606.
  • Catalão, M.J., Gil, F., Moniz-Pereira, J., and Pimentel, M. (2010) The mycobacteriophage Ms6 encodes a chaperone-like protein involved in the endolysin delivery to the peptidoglycan. Mol Microbiol 77: 672686.
  • Catalão, M.J., Gil, F., Moniz-Pereira, J., and Pimentel, M. (2011) Functional analysis of the holin-like proteins of mycobacteriophage Ms6. J Bacteriol 193: 27932803.
  • Croucher, N.J., Harris, S.R., Fraser, C., Quail, M.A., Burton, J., van der Linden, M., et al. (2011) Rapid pneumococcal evolution in response to clinical interventions. Science 331: 430434.
  • Damjanovic, M., Kharat, A.S., Eberhardt, A., Tomasz, A., and Vollmer, W. (2007) The essential tacF gene is responsible for the choline-dependent growth phenotype of Streptococcus pneumoniae. J Bacteriol 189: 71057111.
  • Díaz, E., García, E., Ascaso, C., Méndez, E., López, R., and García, J.L. (1989) Subcellular localization of the major pneumococcal autolysin: a peculiar mechanism of secretion in Escherichia coli. J Biol Chem 264: 12381244.
  • Díaz, E., López, R., and García, J.L. (1990) Chimeric phage-bacterial enzymes: a clue to the modular evolution of genes. Proc Natl Acad Sci USA 87: 81258129.
  • Díaz, E., Munthali, M., Lünsdorf, H., Höltje, J.V., and Timmis, K.N. (1996) The two-step lysis system of pneumococcal bacteriophage EJ-1 is functional in Gram-negative bacteria: triggering of the major pneumococcal autolysin in Escherichia coli. Mol Microbiol 19: 667681.
  • Eldholm, V., Johnsborg, O., Haugen, K., Ohnstad, H.S., and Håvarstein, L.S. (2009) Fratricide in Streptococcus pneumoniae: contributions and role of the cell wall hydrolases CbpD, LytA and LytC. Microbiology 155: 22232234.
  • Fischer, W., Behr, T., Hartmann, R., Peter-Katalinić, J., and Egge, H. (1993) Teichoic acid and lipoteichoic acid of Streptococcus pneumoniae possess identical chain structures. A reinvestigation of teichoid acid (C polysaccharide). Eur J Biochem 215: 851857.
  • Frias, M.J., Melo-Cristino, J., and Ramirez, M. (2009) The autolysin LytA contributes to efficient bacteriophage progeny release in Streptococcus pneumoniae. J Bacteriol 191: 54285440.
  • García, E., Rojo, J.M., García, P., Ronda, C., López, R., and Tomasz, A. (1982) Preparation of antiserum against the pneumococcal autolysin – inhibition of autolysin activity and some autolytic processes by the antibody. FEMS Microbiol Lett 14: 133136.
  • García, J.L., García, E., Arrarás, A., García, P., Ronda, C., and López, R. (1987) Cloning, purification, and biochemical characterization of the pneumococcal bacteriophage Cp-1 lysin. J Virol 61: 25732580.
  • García, P., Paz González, M., García, E., García, J.L., and López, R. (1999) The molecular characterization of the first autolytic lysozyme of Streptococcus pneumoniae reveals evolutionary mobile domains. Mol Microbiol 33: 128138.
  • Giudicelli, S., and Tomasz, A. (1984) Attachment of pneumococcal autolysin to wall teichoic acids, an essential step in enzymatic wall degradation. J Bacteriol 158: 11881190.
  • Haro, A., Vélez, M., Goormaghtigh, E., Lago, S., Vázquez, J., Andreu, D., and Gasset, M. (2003) Reconstitution of holin activity with a synthetic peptide containing the 1-32 sequence region of EJh, the EJ-1 phage holin. J Biol Chem 278: 39293936.
  • Höltje, J.V., and Tomasz, A. (1975a) Lipoteichoic acid: a specific inhibitor of autolysin activity in pneumococcus. Proc Natl Acad Sci USA 72: 16901694.
  • Höltje, J.V., and Tomasz, A. (1975b) Specific recognition of choline residues in the cell wall teichoic acid by the N-acetylmuramyl-L-alanine amidase of pneumococcus. J Biol Chem 250: 60726076.
  • Jolliffe, L.K., Doyle, R.J., and Streips, U.N. (1981) The energized membrane and cellular autolysis in Bacillus subtilis. Cell 25: 753763.
  • Kolberg, J., Høiby, E.A., López, R., and Sletten, K. (1997) Monoclonal antibodies against Streptococcus pneumoniae detect epitopes on eubacterial ribosomal proteins L7/L12 and on streptococcal elongation factor Ts. Microbiology 143: 5561.
  • Kolberg, J., Aase, A., Bergmann, S., Herstad, T.K., Rødal, G., Frank, R., et al. (2006) Streptococcus pneumoniae enolase is important for plasminogen binding despite low abundance of enolase protein on the bacterial cell surface. Microbiology 152: 13071317.
  • Kuty, G.F., Xu, M., Struck, D.K., Summer, E.J., and Young, R. (2010) Regulation of a phage endolysin by disulfide caging. J Bacteriol 192: 56825687.
  • Lacks, S., and Hotchkiss, R.D. (1960) A study of the genetic material determining an enzyme activity in pneumococcus. Biochim Biophys Acta 39: 508517.
  • López, R., and García, E. (2004) Recent trends on the molecular biology of pneumococcal capsules, lytic enzymes, and bacteriophage. FEMS Microbiol Rev 28: 553580.
  • Martín, A.C., López, R., and García, P. (1998) Functional analysis of the two-gene lysis system of the pneumococcal phage Cp-1 in homologous and heterologous host cells. J Bacteriol 180: 210217.
  • Mellroth, P., Daniels, R., Eberhardt, A., Rönnlund, D., Blom, H., Widengren, J., et al. (2012) LytA, major autolysin of Streptococcus pneumoniae, requires access to nascent peptidoglycan. J Biol Chem 287: 1101811029.
  • Morrison, D.A., Lacks, S.A., Guild, W.R., and Hageman, J.M. (1983) Isolation and characterization of three new classes of transformation-deficient mutants of Streptococcus pneumoniae that are defective in DNA transport and genetic recombination. J Bacteriol 156: 281290.
  • Mosser, J.L., and Tomasz, A. (1970) Choline-containing teichoic acid as a structural component of pneumococcal cell wall and its role in sensitivity to lysis by an autolytic enzyme. J Biol Chem 245: 287298.
  • Nascimento, J.G., Guerreiro-Pereira, M.C., Costa, S.F., São-José, C., and Santos, M.A. (2008) Nisin-triggered activity of Lys44, the secreted endolysin from Oenococcus oeni phage fOg44. J Bacteriol 190: 457461.
  • Neuhaus, F.C., and Baddiley, J. (2003) A continuum of anionic charge: structures and functions of d-alanyl-teichoic acids in Gram-positive bacteria. Microbiol Mol Biol Rev 67: 686723.
  • Obregón, V., García, J.L., García, E., López, R., and García, P. (2003a) Genome organization and molecular analysis of the temperate bacteriophage MM1 of Streptococcus pneumoniae. J Bacteriol 185: 23622368.
  • Obregón, V., García, P., López, R., and García, J.L. (2003b) VO1, a temperate bacteriophage of the type 19A multiresistant epidemic 8249 strain of Streptococcus pneumoniae: analysis of variability of lytic and putative C5 methyltransferase genes. Microb Drug Resist 9: 715.
  • Otsuji, N., Sekiguchi, M., Iijima, T., and Takagi, Y. (1959) Induction of phage formation in the lysogenic Escherichia coli K-12 by mitomycin C. Nature 184 (Suppl. 14): 10791080.
  • Park, T., Struck, D.K., Deaton, J.F., and Young, R. (2006) Topological dynamics of holins in programmed bacterial lysis. Proc Natl Acad Sci USA 103: 1971319718.
  • Park, T., Struck, D.K., Dankenbring, C.A., and Young, R. (2007) The pinholin of lambdoid phage 21: control of lysis by membrane depolarization. J Bacteriol 189: 91359139.
  • Price, K.E., and Camilli, A. (2009) Pneumolysin localizes to the cell wall of Streptococcus pneumoniae. J Bacteriol 191: 21632168.
  • Ramirez, M., Severina, E., and Tomasz, A. (1999) A high incidence of prophage carriage among natural isolates of Streptococcus pneumoniae. J Bacteriol 181: 36183625.
  • Ratnayake-Lecamwasam, M., Serror, P., Wong, K.W., and Sonenshein, A.L. (2001) Bacillus subtilis CodY represses early-stationary-phase genes by sensing GTP levels. Genes Dev 15: 10931103.
  • Romero, A., López, R., and García, P. (1990) Sequence of the Streptococcus pneumoniae bacteriophage HB-3 amidase reveals high homology with the major host autolysin. J Bacteriol 172: 50645070.
  • Romero, A., López, R., and García, P. (1993) Lytic action of cloned pneumococcal phage lysis genes in Streptococcus pneumoniae. FEMS Microbiol Lett 108: 8792.
  • Romero, P., García, E., and Mitchell, T.J. (2009) Development of a prophage typing system and analysis of prophage carriage in Streptococcus pneumoniae. Appl Environ Microbiol 75: 16421649.
  • Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  • São-José, C., Parreira, R., Vieira, G., and Santos, M.A. (2000) The N-terminal region of the Oenococcus oeni bacteriophage fOg44 lysin behaves as a bona fide signal peptide in Escherichia coli and as a cis-inhibitory element, preventing lytic activity on oenococcal cells. J Bacteriol 182: 58235831.
  • Su, M.T., Venkatesh, T.V., and Bodmer, R. (1998) Large- and small-scale preparation of bacteriophage lambda lysate and DNA. Biotechniques 25: 4446.
  • Sung, C.K., Li, H., Claverys, J.P., and Morrison, D.A. (2001) An rpsL cassette, Janus, for gene replacement through negative selection in Streptococcus pneumoniae. Appl Environ Microbiol 67: 51905196.
  • Suzuki, H., Pangborn, J., and Kilgore, W.W. (1967) Filamentous cells of Escherichia coli formed in the presence of mitomycin. J Bacteriol 93: 683688.
  • Tettelin, H., Nelson, K.E., Paulsen, I.T., Eisen, J.A., Read, T.D., Peterson, S., et al. (2001) Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 293: 498506.
  • Tomasz, A. (1967) Choline in the cell wall of a bacterium: novel type of polymer-linked choline in Pneumococcus. Science 157: 694697.
  • Tomasz, A. (1968) Biological consequences of the replacement of choline by ethanolamine in the cell wall of pneumococcus: chain formation, loss of transformability, and loss of autolysis. Proc Natl Acad Sci USA 59: 8693.
  • Tomasz, A., and Waks, S. (1975) Mechanism of action of penicillin: triggering of the pneumococcal autolytic enzyme by inhibitors of cell wall synthesis. Proc Natl Acad Sci USA 72: 41624166.
  • Tomasz, A., Zanati, E., and Ziegler, R. (1971) DNA uptake during genetic transformation and the growing zone of the cell envelope. Proc Natl Acad Sci USA 68: 18481852.
  • Tomasz, A., Moreillon, P., and Pozzi, G. (1988) Insertional inactivation of the major autolysin gene of Streptococcus pneumoniae. J Bacteriol 170: 59315934.
  • Tran, T.A., Struck, D.K., and Young, R. (2005) Periplasmic domains define holin-antiholin interactions in t4 lysis inhibition. J Bacteriol 187: 66316640.
  • Wang, I.N., Smith, D.L., and Young, R. (2000) Holins: the protein clocks of bacteriophage infections. Annu Rev Microbiol 54: 799825.
  • Weiser, J.N., Markiewicz, Z., Tuomanen, E.I., and Wani, J.H. (1996) Relationship between phase variation in colony morphology, intrastrain variation in cell wall physiology, and nasopharyngeal colonization by Streptococcus pneumoniae. Infect Immun 64: 22402245.
  • Xu, M., Struck, D.K., Deaton, J., Wang, I.N., and Young, R. (2004) A signal-arrest-release sequence mediates export and control of the phage P1 endolysin. Proc Natl Acad Sci USA 101: 64156420.
  • Xu, M., Arulandu, A., Struck, D.K., Swanson, S., Sacchettini, J.C., and Young, R. (2005) Disulfide isomerization after membrane release of its SAR domain activates P1 lysozyme. Science 307: 113117.
  • Yother, J., and White, J.M. (1994) Novel surface attachment mechanism of the Streptococcus pneumoniae protein PspA. J Bacteriol 176: 29762985.
  • Young, R. (2005) Phage lysis. In Phages, Their Role in Bacterial Pathogenesis and Biotechnology. Waldor, M.K. , Friedman, D.I. , and Adhya, S.L. (eds). Washington, DC: ASM Press, American Society for Microbiology, pp. 92127.
  • Zhang, J.R., Idanpaan-Heikkila, I., Fischer, W., and Tuomanen, E.I. (1999) Pneumococcal licD2 gene is involved in phosphorylcholine metabolism. Mol Microbiol 31: 14771488.