SEARCH

SEARCH BY CITATION

References

  • Ables, G.P., Takamatsu, D., Noma, H., El-Shazly, S., Jin, H.K., Taniguchi, T., et al. (2001) The roles of Nramp1 and Tnfα genes in nitric oxide production and their effect on the growth of Salmonella typhimurium in macrophages from Nramp1 congenic and tumor necrosis factor-alpha−/− mice. J Interferon Cytokine Res 21: 5362.
  • Baker, M.A., Cerniglia, G.J., and Zaman, A. (1990) Microtiter plate assay for the measurement of glutathione and glutathione disulfide in large numbers of biological samples. Anal Biochem 190: 360365.
  • Bang, I.S., Liu, L., Vazquez-Torres, A., Crouch, M.L., Stamler, J.S., and Fang, F.C. (2006) Maintenance of nitric oxide and redox homeostasis by the salmonella flavohemoglobin hmp. J Biol Chem 281: 2803928047.
  • Barton, C.H., Whitehead, S.H., and Blackwell, J.M. (1995) Nramp transfection transfers Ity/Lsh/Bcg-related pleiotropic effects on macrophage activation: influence on oxidative burst and nitric oxide pathways. Mol Med 1: 267279.
  • Berger, S.B., Romero, X., Ma, C., Wang, G., Faubion, W.A., Liao, G., et al. (2010) SLAM is a microbial sensor that regulates bacterial phagosome functions in macrophages. Nat Immunol 11: 920927.
  • Bjur, E., Eriksson-Ygberg, S., Aslund, F., and Rhen, M. (2006) Thioredoxin 1 promotes intracellular replication and virulence of Salmonella enterica serovar Typhimurium. Infect Immun 74: 51405151.
  • Bodenmiller, D.M., and Spiro, S. (2006) The yjeB (nsrR) gene of Escherichia coli encodes a nitric oxide-sensitive transcriptional regulator. J Bacteriol 188: 874881.
  • Bourret, T.J., Song, M., and Vazquez-Torres, A. (2009) Codependent and independent effects of nitric oxide-mediated suppression of PhoPQ and Salmonella pathogenicity island 2 on intracellular Salmonella enterica serovar typhimurium survival. Infect Immun 77: 51075115.
  • Bouter, S., Kerklaan, P.R., Zoetemelk, C.E., and Mohn, G.R. (1988) Biochemical characterization of glutathione-deficient mutants of Escherichia coli K12 and Salmonella strains TA1535 and TA100. Biochem Pharmacol 37: 577581.
  • Brandes, N., Rinck, A., Leichert, L.I., and Jakob, U. (2007) Nitrosative stress treatment of E. coli targets distinct set of thiol-containing proteins. Mol Microbiol 66: 901914.
  • Butler, C.S., Seward, H.E., Greenwood, C., and Thomson, A.J. (1997) Fast cytochrome bo from Escherichia coli binds two molecules of nitric oxide at CuB. Biochemistry 36: 1625916266.
  • Cameron, J.C., and Pakrasi, H.B. (2010) Essential role of glutathione in acclimation to environmental and redox perturbations in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol 154: 16721685.
  • Chakravortty, D., Hansen-Wester, I., and Hensel, M. (2002) Salmonella pathogenicity island 2 mediates protection of intracellular Salmonella from reactive nitrogen intermediates. J Exp Med 195: 11551166.
  • Cherepanov, P.P., and Wackernagel, W. (1995) Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158: 914.
  • Chi, B.K., Gronau, K., Mader, U., Hessling, B., Becher, D., and Antelmann, H. (2011) S-bacillithiolation protects against hypochlorite stress in Bacillus subtilis as revealed by transcriptomics and redox proteomics. Mol Cell Proteomics 10: M111009506.
  • Crawford, M.J., and Goldberg, D.E. (1998) Role for the Salmonella flavohemoglobin in protection from nitric oxide. J Biol Chem 273: 1254312547.
  • Datsenko, K.A., and Wanner, B.L. (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97: 66406645.
  • De Groote, M.A., Granger, D., Xu, Y., Campbell, G., Prince, R., and Fang, F.C. (1995) Genetic and redox determinants of nitric oxide cytotoxicity in a Salmonella typhimurium model. Proc Natl Acad Sci USA 92: 63996403.
  • De Groote, M.A., Testerman, T., Xu, Y., Stauffer, G., and Fang, F.C. (1996) Homocysteine antagonism of nitric oxide-related cytostasis in Salmonella typhimurium. Science 272: 414417.
  • Ellermeier, C.D., Janakiraman, A., and Slauch, J.M. (2002) Construction of targeted single copy lac fusions using lambda Red and FLP-mediated site-specific recombination in bacteria. Gene 290: 153161.
  • Fahey, R.C. (2012) Glutathione analogs in prokaryotes. Biochim Biophys Acta pii: S0304-4165(12)00286-3. doi: 10.1016/j.bbagen.2012.10.006
  • Fang, F.C. (2004) Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat Rev Microbiol 2: 820832.
  • Fang, F.C., DeGroote, M.A., Foster, J.W., Baumler, A.J., Ochsner, U., Testerman, T., et al. (1999) Virulent Salmonella typhimurium has two periplasmic Cu, Zn-superoxide dismutases. Proc Natl Acad Sci USA 96: 75027507.
  • Fritsche, G., Dlaska, M., Barton, H., Theurl, I., Garimorth, K., and Weiss, G. (2003) Nramp1 functionality increases inducible nitric oxide synthase transcription via stimulation of IFN regulatory factor 1 expression. J Immunol 171: 19941998.
  • Gallois, A., Klein, J.R., Allen, L.A., Jones, B.D., and Nauseef, W.M. (2001) Salmonella pathogenicity island 2-encoded type III secretion system mediates exclusion of NADPH oxidase assembly from the phagosomal membrane. J Immunol 166: 57415748.
  • Gilberthorpe, N.J., and Poole, R.K. (2008) Nitric oxide homeostasis in Salmonella typhimurium: roles of respiratory nitrate reductase and flavohemoglobin. J Biol Chem 283: 1114611154.
  • Greenberg, J.T., and Demple, B. (1986) Glutathione in Escherichia coli is dispensable for resistance to H2O2 and gamma radiation. J Bacteriol 168: 10261029.
  • Hausladen, A., Gow, A., and Stamler, J.S. (2001) Flavohemoglobin denitrosylase catalyzes the reaction of a nitroxyl equivalent with molecular oxygen. Proc Natl Acad Sci USA 98: 1010810112.
  • Helbig, K., Bleuel, C., Krauss, G.J., and Nies, D.H. (2008) Glutathione and transition-metal homeostasis in Escherichia coli. J Bacteriol 190: 54315438.
  • Henard, C.A., and Vazquez-Torres, A. (2012) DksA-dependent resistance of Salmonella enterica serovar Typhimurium against the antimicrobial activity of inducible nitric oxide synthase. Infect Immun 80: 13731380.
  • Henard, C.A., and Vazquez-Torres, A. (2013) Regulation of Salmonella Resistance to Oxidative and Nitrosative Stress. Vasil, M.L. , and Darwin, A.J. (eds). Washington, DC: ASM Press, pp. 425440.
  • Henard, C.A., Bourret, T.J., Song, M., and Vazquez-Torres, A. (2010) Control of redox balance by the stringent response regulatory protein promotes antioxidant defenses of Salmonella. J Biol Chem 285: 3678536793.
  • Herold, S., and Rock, G. (2005) Mechanistic studies of S-nitrosothiol formation by NO*/O2 and by NO*/methemoglobin. Arch Biochem Biophys 436: 386396.
  • Husain, M., Bourret, T.J., McCollister, B.D., Jones-Carson, J., Laughlin, J., and Vazquez-Torres, A. (2008) Nitric oxide evokes an adaptive response to oxidative stress by arresting respiration. J Biol Chem 283: 76827689.
  • Husain, M., Jones-Carson, J., Song, M., McCollister, B.D., Bourret, T.J., and Vazquez-Torres, A. (2010) Redox sensor SsrB Cys203 enhances Salmonella fitness against nitric oxide generated in the host immune response to oral infection. Proc Natl Acad Sci USA 107: 1439614401.
  • Imlay, J.A., and Linn, S. (1987) Mutagenesis and stress responses induced in Escherichia coli by hydrogen peroxide. J Bacteriol 169: 29672976.
  • Keshive, M., Singh, S., Wishnok, J.S., Tannenbaum, S.R., and Deen, W.M. (1996) Kinetics of S-nitrosation of thiols in nitric oxide solutions. Chem Res Toxicol 9: 988993.
  • Keszler, A., Zhang, Y., and Hogg, N. (2010) Reaction between nitric oxide, glutathione, and oxygen in the presence and absence of protein: how are S-nitrosothiols formed? Free Radic Biol Med 48: 5564.
  • Koppenol, W.H., Moreno, J.J., Pryor, W.A., Ischiropoulos, H., and Beckman, J.S. (1992) Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem Res Toxicol 5: 834842.
  • McCollister, B.D., Bourret, T.J., Gill, R., Jones-Carson, J., and Vazquez-Torres, A. (2005) Repression of SPI2 transcription by nitric oxide-producing, IFNγ-activated macrophages promotes maturation of Salmonella phagosomes. J Exp Med 202: 625635.
  • McCollister, B.D., Myers, J.T., Jones-Carson, J., Husain, M., Bourret, T.J., and Vazquez-Torres, A. (2007) N2O3 enhances the nitrosative potential of IFNγ-primed macrophages in response to Salmonella. Immunobiology 212: 759769.
  • Masip, L., Veeravalli, K., and Georgiou, G. (2006) The many faces of glutathione in bacteria. Antioxid Redox Signal 8: 753762.
  • Mastroeni, P., Vazquez-Torres, A., Fang, F.C., Xu, Y., Khan, S., Hormaeche, C.E., and Dougan, G. (2000) Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. II. Effects on microbial proliferation and host survival in vivo. J Exp Med 192: 237248.
  • Meister, A., and Anderson, M.E. (1983) Glutathione. Annu Rev Biochem 52: 711760.
  • Miller, R.E., and Stadtman, E.R. (1972) Glutamate synthase from Escherichia coli. An iron-sulfide flavoprotein. J Biol Chem 247: 74077419.
  • Mills, P.C., Richardson, D.J., Hinton, J.C., and Spiro, S. (2005) Detoxification of nitric oxide by the flavorubredoxin of Salmonella enterica serovar Typhimurium. Biochem Soc Trans 33: 198199.
  • Mills, P.C., Rowley, G., Spiro, S., Hinton, J.C., and Richardson, D.J. (2008) A combination of cytochrome c nitrite reductase (NrfA) and flavorubredoxin (NorV) protects Salmonella enterica serovar Typhimurium against killing by NO in anoxic environments. Microbiology 154: 12181228.
  • Miranda-Vizuete, A., Rodriguez-Ariza, A., Toribio, F., Holmgren, A., Lopez-Barea, J., and Pueyo, C. (1996) The levels of ribonucleotide reductase, thioredoxin, glutaredoxin 1, and GSH are balanced in Escherichia coli K12. J Biol Chem 271: 1909919103.
  • Nairz, M., Fritsche, G., Crouch, M.L., Barton, H.C., Fang, F.C., and Weiss, G. (2009) Slc11a1 limits intracellular growth of Salmonella enterica sv. Typhimurium by promoting macrophage immune effector functions and impairing bacterial iron acquisition. Cell Microbiol 11: 13651381.
  • Ochman, H., Soncini, F.C., Solomon, F., and Groisman, E.A. (1996) Identification of a pathogenicity island required for Salmonella survival in host cells. Proc Natl Acad Sci USA 93: 78007804.
  • Park, S., and Imlay, J.A. (2003) High levels of intracellular cysteine promote oxidative DNA damage by driving the fenton reaction. J Bacteriol 185: 19421950.
  • Peltoniemi, M.J., Karala, A.R., Jurvansuu, J.K., Kinnula, V.L., and Ruddock, L.W. (2006) Insights into deglutathionylation reactions. Different intermediates in the glutaredoxin and protein disulfide isomerase catalyzed reactions are defined by the gamma-linkage present in glutathione. J Biol Chem 281: 3310733114.
  • Potter, A.J., Trappetti, C., and Paton, J.C. (2012) Streptococcus pneumoniae uses glutathione to defend against oxidative stress and metal ion toxicity. J Bacteriol 194: 62486254.
  • Richardson, A.R., Soliven, K.C., Castor, M.E., Barnes, P.D., Libby, S.J., and Fang, F.C. (2009) The Base Excision Repair system of Salmonella enterica serovar typhimurium counteracts DNA damage by host nitric oxide. PLoS Pathog 5: e1000451.
  • Ritz, D., and Beckwith, J. (2001) Roles of thiol-redox pathways in bacteria. Annu Rev Microbiol 55: 2148.
  • Ruiz-Albert, J., Yu, X.J., Beuzon, C.R., Blakey, A.N., Galyov, E.E., and Holden, D.W. (2002) Complementary activities of SseJ and SifA regulate dynamics of the Salmonella typhimurium vacuolar membrane. Mol Microbiol 44: 645661.
  • Schafer, F.Q., and Buettner, G.R. (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30: 11911212.
  • Singh, S.P., Wishnok, J.S., Keshive, M., Deen, W.M., and Tannenbaum, S.R. (1996) The chemistry of the S-nitrosoglutathione/glutathione system. Proc Natl Acad Sci USA 93: 1442814433.
  • Stevanin, T.M., Ioannidis, N., Mills, C.E., Kim, S.O., Hughes, M.N., and Poole, R.K. (2000) Flavohemoglobin Hmp affords inducible protection for Escherichia coli respiration, catalyzed by cytochromes bo’ or bd, from nitric oxide. J Biol Chem 275: 3586835875.
  • Suvarnapunya, A.E., and Stein, M.A. (2005) DNA base excision repair potentiates the protective effect of Salmonella Pathogenicity Island 2 within macrophages. Microbiology 151: 557567.
  • Tran, Q.H., Arras, T., Becker, S., Holighaus, G., Ohlberger, G., and Unden, G. (2000) Role of glutathione in the formation of the active form of the oxygen sensor FNR ([4Fe-4S].FNR) and in the control of FNR function. Eur J Biochem 267: 48174824.
  • Tucker, N.P., Hicks, M.G., Clarke, T.A., Crack, J.C., Chandra, G., Le Brun, N.E., et al. (2008) The transcriptional repressor protein NsrR senses nitric oxide directly via a [2Fe-2S] cluster. PLoS ONE 3: e3623.
  • Uchiya, K., Barbieri, M.A., Funato, K., Shah, A.H., Stahl, P.D., and Groisman, E.A. (1999) A Salmonella virulence protein that inhibits cellular trafficking. EMBO J 18: 39243933.
  • Vazquez-Torres, A. (2012) Redox active thiol sensors of oxidative and nitrosative stress. Antioxid Redox Signal 17: 12011214.
  • Vazquez-Torres, A., and Fang, F.C. (2001) Oxygen-dependent anti-Salmonella activity of macrophages. Trends Microbiol 9: 2933.
  • Vazquez-Torres, A., Jones-Carson, J., Baumler, A.J., Falkow, S., Valdivia, R., Brown, W., et al. (1999) Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes. Nature 401: 804808.
  • Vazquez-Torres, A., Jones-Carson, J., Mastroeni, P., Ischiropoulos, H., and Fang, F.C. (2000a) Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. I. Effects on microbial killing by activated peritoneal macrophages in vitro. J Exp Med 192: 227236.
  • Vazquez-Torres, A., Xu, Y., Jones-Carson, J., Holden, D.W., Lucia, S.M., Dinauer, M.C., et al. (2000b) Salmonella pathogenicity island 2-dependent evasion of the phagocyte NADPH oxidase. Science 287: 16551658.
  • Velayudhan, J., Castor, M., Richardson, A., Main-Hester, K.L., and Fang, F.C. (2007) The role of ferritins in the physiology of Salmonella enterica sv. Typhimurium: a unique role for ferritin B in iron-sulphur cluster repair and virulence. Mol Microbiol 63: 14951507.
  • Wang, R.F., and Kushner, S.R. (1991) Construction of versatile low-copy-number vectors for cloning, sequencing and gene expression in Escherichia coli. Gene 100: 195199.
  • Winterbourn, C.C., and Metodiewa, D. (1999) Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide. Free Radic Biol Med 27: 322328.
  • Woodmansee, A.N., and Imlay, J.A. (2003) A mechanism by which nitric oxide accelerates the rate of oxidative DNA damage in Escherichia coli. Mol Microbiol 49: 1122.
  • Yu, X.J., Ruiz-Albert, J., Unsworth, K.E., Garvis, S., Liu, M., and Holden, D.W. (2002) SpiC is required for secretion of Salmonella Pathogenicity Island 2 type III secretion system proteins. Cell Microbiol 4: 531540.
  • Zaharik, M.L., Cullen, V.L., Fung, A.M., Libby, S.J., Kujat Choy, S.L., Coburn, B., et al. (2004) The Salmonella enterica serovar typhimurium divalent cation transport systems MntH and SitABCD are essential for virulence in an Nramp1G169 murine typhoid model. Infect Immun 72: 55225525.