SEARCH

SEARCH BY CITATION

References

  • Barry, C.E., III, Boshoff, H.I., Dartois, V., Dick, T., Ehrt, S., Flynn, J., et al. (2009) The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat Rev Microbiol 7: 845855.
  • Beckman, J.S., Beckman, T.W., Chen, J., Marshall, P.A., and Freeman, B.A. (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87: 16201624.
  • Belenky, P., and Collins, J.J. (2011) Microbiology. Antioxidant strategies to tolerate antibiotics. Science 334: 915916.
  • Beyer, R.E. (1994) The relative essentiality of the antioxidative function of coenzyme Q – the interactive role of DT-diaphorase. Mol Aspects Med 15 (Suppl.): s117s129.
  • Beyer, R.E., Segura-Aguilar, J., di Bernardo, S., Cavazzoni, M., Fato, R., Fiorentini, D., et al. (1997) The two-electron quinone reductase DT-diaphorase generates and maintains the antioxidant (reduced) form of coenzyme Q in membranes. Mol Aspects Med 18 (Suppl.): S15S23.
  • Boshoff, H.I., Myers, T.G., Copp, B.R., McNeil, M.R., Wilson, M.A., and Barry, C.E., III (2004) The transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism: novel insights into drug mechanisms of action. J Biol Chem 279: 4017440184.
  • Cellitti, S.E., Shaffer, J., Jones, D.H., Mukherjee, T., Gurumurthy, M., Bursulaya, B., et al. (2012) Structure of Ddn, the deazaflavin-dependent nitroreductase from Mycobacterium tuberculosis involved in bioreductive activation of PA-824. Structure 20: 101112.
  • Choi, K.P., Kendrick, N., and Daniels, L. (2002) Demonstration that fbiC is required by Mycobacterium bovis BCG for coenzyme F(420) and FO biosynthesis. J Bacteriol 184: 24202428.
  • Cole, S.T., Eiglmeier, K., Parkhill, J., James, K.D., Thomson, N.R., Wheeler, P.R., et al. (2001) Massive gene decay in the leprosy bacillus. Nature 409: 10071011.
  • Collins, M.D., and Jones, D. (1981) Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 45: 316354.
  • Darwin, K.H., Ehrt, S., Gutierrez-Ramos, J.C., Weich, N., and Nathan, C.F. (2003) The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide. Science 302: 19631966.
  • Diacon, A.H., Dawson, R., von Groote-Bidlingmaier, F., Symons, G., Venter, A., Donald, P.R., et al. (2012) 14-day bactericidal activity of PA-824, bedaquiline, pyrazinamide, and moxifloxacin combinations: a randomised trial. Lancet 380: 986993.
  • Ehrt, S., and Schnappinger, D. (2009) Mycobacterial survival strategies in the phagosome: defence against host stresses. Cell Microbiol 11: 11701178.
  • Gonzalez, C.F., Ackerley, D.F., Lynch, S.V., and Matin, A. (2005) ChrR, a soluble quinone reductase of Pseudomonas putida that defends against H2O2. J Biol Chem 280: 2259022595.
  • Graham, D.E. (2010) A new role for coenzyme F420 in aflatoxin reduction by soil mycobacteria. Mol Microbiol 78: 533536.
  • Gu, S., Chen, J., Dobos, K.M., Bradbury, E.M., Belisle, J.T., and Chen, X. (2003) Comprehensive proteomic profiling of the membrane constituents of a Mycobacterium tuberculosis strain. Mol Cell Proteomics 2: 12841296.
  • Guerra-Lopez, D., Daniels, L., and Rawat, M. (2007) Mycobacterium smegmatis mc2 155 fbiC and MSMEG_2392 are involved in triphenylmethane dye decolorization and coenzyme F420 biosynthesis. Microbiology 153: 27242732.
  • Gurumurthy, M., Mukherjee, T., Dowd, C.S., Singh, R., Niyomrattanakit, P., Tay, J.A., et al. (2012) Substrate specificity of the deazaflavin-dependent nitroreductase from Mycobacterium tuberculosis responsible for the bioreductive activation of bicyclic nitroimidazoles. FEBS J 279: 113125.
  • Hasan, M.R., Rahman, M., Jaques, S., Purwantini, E., and Daniels, L. (2010) Glucose 6-phosphate accumulation in mycobacteria: implications for a novel F420-dependent anti-oxidant defense system. J Biol Chem 285: 1913519144.
  • Hasan, Z., Schlax, C., Kuhn, L., Lefkovits, I., Young, D., Thole, J., and Pieters, J. (1997) Isolation and characterization of the mycobacterial phagosome: segregation from the endosomal/lysosomal pathway. Mol Microbiol 24: 545553.
  • Hong, Y., Wang, G., and Maier, R.J. (2008) The NADPH quinone reductase MdaB confers oxidative stress resistance to Helicobacter hepaticus. Microb Pathog 44: 169174.
  • Imlay, J.A. (2008) Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem 77: 755776.
  • Jacobson, F., and Walsh, C. (1984) Properties of 7,8-didemethyl-8-hydroxy-5-deazaflavins relevant to redox coenzyme function in methanogen metabolism. Biochemistry 23: 979988.
  • Kohanski, M.A., Dwyer, D.J., Hayete, B., Lawrence, C.A., and Collins, J.J. (2007) A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130: 797810.
  • Korshunov, S., and Imlay, J.A. (2006) Detection and quantification of superoxide formed within the periplasm of Escherichia coli. J Bacteriol 188: 63266334.
  • Ma, J.F., Hager, P.W., Howell, M.L., Phibbs, P.V., and Hassett, D.J. (1998) Cloning and characterization of the Pseudomonas aeruginosa zwf gene encoding glucose-6-phosphate dehydrogenase, an enzyme important in resistance to methyl viologen (paraquat). J Bacteriol 180: 17411749.
  • Manjunatha, U.H., Boshoff, H., Dowd, C.S., Zhang, L., Albert, T.J., Norton, J.E., et al. (2006) Identification of a nitroimidazo-oxazine-specific protein involved in PA-824 resistance in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 103: 431436.
  • Matsumoto, M., Hashizume, H., Tomishige, T., Kawasaki, M., Tsubouchi, H., Sasaki, H., et al. (2006) OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice. PLoS Med 3: e466.
  • Mukherjee, P., Sureka, K., Datta, P., Hossain, T., Barik, S., Das, K.P., et al. (2009) Novel role of Wag31 in protection of mycobacteria under oxidative stress. Mol Microbiol 73: 103119.
  • Mukherjee, T., and Boshoff, H. (2011) Nitroimidazoles for the treatment of TB: past, present and future. Future Med Chem 3: 14271454.
  • Muller, F. (1987) Flavin radicals: chemistry and biochemistry. Free Radic Biol Med 3: 215230.
  • Nathan, C., and Shiloh, M.U. (2000) Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci USA 97: 88418848.
  • Nuermberger, E., Tyagi, S., Tasneen, R., Williams, K.N., Almeida, D., Rosenthal, I., and Grosset, J.H. (2008) Powerful bactericidal and sterilizing activity of a regimen containing PA-824, moxifloxacin, and pyrazinamide in a murine model of tuberculosis. Antimicrob Agents Chemother 52: 15221524.
  • Purwantini, E., and Daniels, L. (1996) Purification of a novel coenzyme F-420-dependent glucose-6-phosphate dehydrogenase from Mycobacterium smegmatis. J Bacteriol 178: 28612866.
  • Roldan, M.D., Perez-Reinado, E., Castillo, F., and Moreno-Vivian, C. (2008) Reduction of polynitroaromatic compounds: the bacterial nitroreductases. FEMS Microbiol Rev 32: 474500.
  • Ross, D., and Siegel, D. (2004) NAD(P)H:quinone oxidoreductase 1 (NQO1, DT-diaphorase), functions and pharmacogenetics. Methods Enzymol 382: 115144.
  • Rustad, T.R., Harrell, M.I., Liao, R., and Sherman, D.R. (2008) The enduring hypoxic response of Mycobacterium tuberculosis. PLoS ONE 3: e1502.
  • Seedorf, H., Dreisbach, A., Hedderich, R., Shima, S., and Thauer, R.K. (2004) F420H2 oxidase (FprA) from Methanobrevibacter arboriphilus, a coenzyme F-420-dependent enzyme involved in O-2 detoxification. Arch Microbiol 182: 126137.
  • Selengut, J.D., and Haft, D.H. (2010) Unexpected abundance of coenzyme F420-dependent enzymes in the genomes of Mycobacterium tuberculosis and other Actinobacteria. J Bacteriol 192: 57885798.
  • Sherrid, A.M., Rustad, T.R., Cangelosi, G.A., and Sherman, D.R. (2010) Characterization of a Clp protease gene regulator and the reaeration response in Mycobacterium tuberculosis. PLoS ONE 5: e11622.
  • Singh, R., Manjunatha, U., Boshoff, H.I., Ha, Y.H., Niyomrattanakit, P., Ledwidge, R., et al. (2008) PA-824 kills nonreplicating Mycobacterium tuberculosis by intracellular NO release. Science 322: 13921395.
  • Sinha, S., Kosalai, K., Arora, S., Namane, A., Sharma, P., Gaikwad, A.N., et al. (2005) Immunogenic membrane-associated proteins of Mycobacterium tuberculosis revealed by proteomics. Microbiology 151: 24112419.
  • Stover, C.K., Warrener, P., VanDevanter, D.R., Sherman, D.R., Arain, T.M., Langhorne, M.H., et al. (2000) A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature 405: 962966.
  • Walsh, C. (1986) Naturally-occurring 5-deazaflavin coenzymes – biological redox roles. Acc Chem Res 19: 216221.
  • Wang, G., and Maier, R.J. (2004) An NADPH quinone reductase of Helicobacter pylori plays an important role in oxidative stress resistance and host colonization. Infect Immun 72: 13911396.
  • Wayne, L.G., and Hayes, L.G. (1996) An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect Immun 64: 20622069.
  • Yano, T., Kassovska-Bratinova, S., Teh, J.S., Winkler, J., Sullivan, K., Isaacs, A., et al. (2011) Reduction of clofazimine by mycobacterial type 2 NADH:quinone oxidoreductase: a pathway for the generation of bactericidal levels of reactive oxygen species. J Biol Chem 286: 1027610287.