KsgA, a universally conserved small ribosomal subunit (SSU) rRNA methyltransferase, has recently been shown to facilitate a checkpoint within the ribosome maturation pathway. Under standard growth conditions removal of the KsgA checkpoint has a subtle impact on cell growth; yet, upon overexpresssion of RbfA, a ribosome maturation factor, KsgA becomes essential. Our results demonstrate the requirement of KsgA, in the presence of excess RbfA, both for the incorporation of ribosomal protein S21 to the developing SSU, and for final maturation of SSU rRNA. Also, when SSU biogenesis is perturbed by an imbalance in KsgA and RbfA, a population of 70S-like particles accumulates that is compositionally, functionally and structurally distinct from mature 70S ribosomes. Thus, our work suggests that KsgA and RbfA function together and are required for SSU maturation, and that additional checkpoints likely act to modulate malfunctional 70S particle formation in vivo.