SEARCH

SEARCH BY CITATION

References

  • Aschtgen, M.S., Bernard, C.S., De Bentzmann, S., Lloubes, R., and Cascales, E. (2008) SciN is an outer membrane lipoprotein required for type VI secretion in enteroaggregative Escherichia coli. J Bacteriol 190: 75237531.
  • Aschtgen, M.S., Gavioli, M., Dessen, A., Lloubes, R., and Cascales, E. (2010) The SciZ protein anchors the enteroaggregative Escherichia coli Type VI secretion system to the cell wall. Mol Microbiol 75: 886899.
  • Ballister, E.R., Lai, A.H., Zuckermann, R.N., Cheng, Y., and Mougous, J.D. (2008) In vitro self-assembly of tailorable nanotubes from a simple protein building block. Proc Natl Acad Sci USA 105: 37333738.
  • Basler, M., and Mekalanos, J.J. (2012) Type 6 secretion dynamics within and between bacterial cells. Science 337: 815. doi:10.1126/science.1222901.
  • Basler, M., Pilhofer, M., Henderson, G., Jensen, G.J., and Mekalanos, J.J. (2012) Type VI secretion requires a dynamic contractile phage tail-like structure. Nature 483: 182186.
  • Bingle, L.E., Bailey, C.M., and Pallen, M.J. (2008) Type VI secretion: a beginner's guide. Curr Opin Microbiol 11: 38.
  • Bonemann, G., Pietrosiuk, A., Diemand, A., Zentgraf, H., and Mogk, A. (2009) Remodelling of VipA/VipB tubules by ClpV-mediated threading is crucial for type VI protein secretion. EMBO J 28: 315325.
  • Bonemann, G., Pietrosiuk, A., and Mogk, A. (2010) Tubules and donuts: a type VI secretion story. Mol Microbiol 76: 815821.
  • Felisberto-Rodrigues, C., Durand, E., Aschtgen, M.S., Blangy, S., Ortiz-Lombardia, M., Douzi, B., et al. (2011) Towards a structural comprehension of bacterial type VI secretion systems: characterization of the TssJ–TssM complex of an Escherichia coli pathovar. PLoS Pathog 7: e1002386.
  • Ghosh, P., Griffith, J., Geuze, H.J., and Kornfeld, S. (2003) Mammalian GGAs act together to sort mannose 6-phosphate receptors. J Cell Biol 163: 755766.
  • Hamashima, H., Iwasaki, M., and Arai, T. (1995) A simple and rapid method for transformation of Vibrio species by electroporation. Methods Mol Biol 47: 155160.
  • Hood, R.D., Singh, P., Hsu, F., Guvener, T., Carl, M.A., Trinidad, R.R., et al. (2010) A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 7: 2537.
  • Hsu, F., Schwarz, S., and Mougous, J.D. (2009) TagR promotes PpkA-catalysed type VI secretion activation in Pseudomonas aeruginosa. Mol Microbiol 72: 11111125.
  • Kirstein, J., Schlothauer, T., Dougan, D.A., Lilie, H., Tischendorf, G., Mogk, A., et al. (2006) Adaptor protein controlled oligomerization activates the AAA+ protein ClpC. EMBO J 25: 14811491.
  • Leiman, P.G., Basler, M., Ramagopal, U.A., Bonanno, J.B., Sauder, J.M., Pukatzki, S., et al. (2009) Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc Natl Acad Sci USA 106: 41544159.
  • Leiman, P.G., Arisaka, F., van Raaij, M.J., Kostyuchenko, V.A., Aksyuk, A.A., Kanamaru, S., and Rossmann, M.G. (2010) Morphogenesis of the T4 tail and tail fibers. Virol J 7: 355.
  • Ma, L.S., Lin, J.S., and Lai, E.M. (2009) An IcmF family protein, ImpLM, is an integral inner membrane protein interacting with ImpKL, and its walker a motif is required for type VI secretion system-mediated Hcp secretion in Agrobacterium tumefaciens. J Bacteriol 191: 43164329.
  • Ma, L.S., Narberhaus, F., and Lai, E.M. (2012) IcmF family protein TssM exhibits ATPase activity and energizes type VI secretion. J Biol Chem 287: 1561015621.
  • MacIntyre, D.L., Miyata, S.T., Kitaoka, M., and Pukatzki, S. (2010) The Vibrio cholerae type VI secretion system displays antimicrobial properties. Proc Natl Acad Sci USA 107: 1952019524.
  • Mougous, J.D., Cuff, M.E., Raunser, S., Shen, A., Zhou, M., Gifford, C.A., et al. (2006) A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312: 15261530.
  • Mougous, J.D., Gifford, C.A., Ramsdell, T.L., and Mekalanos, J.J. (2007) Threonine phosphorylation post-translationally regulates protein secretion in Pseudomonas aeruginosa. Nat Cell Biol 9: 797803.
  • Oguchi, Y., Kummer, E., Seyffer, F., Berynskyy, M., Anstett, B., Wade, R.C., et al. (2012) A tightly regulated molecular toggle controls AAA+ disaggregase. Nat Struct Mol Biol 19: 13381346. doi:10.1038/nsmb.2441.
  • Pell, L.G., Kanelis, V., Donaldson, L.W., Howell, P.L., and Davidson, A.R. (2009) The phage lambda major tail protein structure reveals a common evolution for long-tailed phages and the type VI bacterial secretion system. Proc Natl Acad Sci USA 106: 41604165.
  • Philippe, N., Alcaraz, J., Coursange, E., Geiselmann, J., and Schneider, D. (2004) Improvement of pCVD442, a suicide plasmid for gene allele exchange in bacteria. Plasmid 51: 246255.
  • Pietrosiuk, A., Lenherr, E.D., Falk, S., Boenemann, G., Kopp, J., Zentgraf, H., et al. (2011) Molecular basis for the unique role of the AAA+ chaperone ClpV in type VI protein secretion. J Biol Chem 286: 3001030021. doi:10.1074/jbc.M111.253377
  • Pukatzki, S., Ma, A.T., Sturtevant, D., Krastins, B., Sarracino, D., Nelson, W.C., et al. (2006) Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci USA 103: 15281533.
  • Pukatzki, S., Ma, A.T., Revel, A.T., Sturtevant, D., and Mekalanos, J.J. (2007) Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci USA 104: 1550815513.
  • Raposo, G., Kleijmeerm, M.J., Posthuma, G., Slot, J.W., and Geuze, H.J. (1997) Immunogold labeling of ultrathin cryosections: application in immunology. In Weir's Handbook of Experimental Immunology, 5th edn, Vol. 208. Weir, D.M. (ed.). Malden, MA: Blackwell Science, pp. 1208.
  • Russell, A.B., Hood, R.D., Bui, N.K., LeRoux, M., Vollmer, W., and Mougous, J.D. (2011) Type VI secretion delivers bacteriolytic effectors to target cells. Nature 475: 343347.
  • Seyffer, F., Kummer, E., Oguchi, Y., Winkler, J., Kumar, M., Zahn, R., et al. (2012) Hsp70 proteins bind Hsp100 regulatory M-domains to activate AAA+ disaggregase at aggregate surfaces. Nat Struct Mol Biol 19: 13471355. doi:10.1038/nsmb.2442.
  • Sourjik, V., and Berg, H.C. (2000) Localization of components of the chemotaxis machinery of Escherichia coli using fluorescent protein fusions. Mol Microbiol 37: 740751.
  • Teleman, A.A., Graumann, P.L., Lin, D.C., Grossman, A.D., and Losick, R. (1998) Chromosome arrangement within a bacterium. Curr Biol 8: 11021109.
  • Veesler, D., and Cambillau, C. (2011) A common evolutionary origin for tailed-bacteriophage functional modules and bacterial machineries. Microbiol Mol Biol Rev 75: 423433; first page of table of contents.
  • Wang, F., Mei, Z., Qi, Y., Yan, C., Hu, Q., Wang, J., and Shi, Y. (2011) Structure and mechanism of the hexameric MecA–ClpC molecular machine. Nature 471: 331335.
  • Winkler, J., Tyedmers, J., Bukau, B., and Mogk, A. (2012) Chaperone networks in protein disaggregation and prion propagation. J Struct Biol 179: 152160.
  • Zheng, J., Ho, B., and Mekalanos, J.J. (2011) Genetic analysis of anti-amoebae and anti-bacterial activities of the type VI secretion system in Vibrio cholerae. PLoS ONE 6: e23876.