SEARCH

SEARCH BY CITATION

Summary

In addition to the phosphoenolpyruvate:sugar phosphotransferase system (sugar PTS), most proteobacteria possess a paralogous system (nitrogen phosphotransferase system, PTSNtr). The first proteins in both pathways are enzymes (enzyme Isugar and enzyme INtr) that can be autophosphorylated by phosphoenolpyruvate. The most striking difference between enzyme Isugar and enzyme INtr is the presence of a GAF domain at the N-terminus of enzyme INtr. Since the PTSNtr was identified in 1995, it has been implicated in a variety of cellular processes in many proteobacteria and many of these regulations have been shown to be dependent on the phosphorylation state of PTSNtr components. However, there has been little evidence that any component of this so-called PTSNtr is directly involved in nitrogen metabolism. Moreover, a signal regulating the phosphorylation state of the PTSNtr had not been uncovered. Here, we demonstrate that glutamine and α-ketoglutarate, the canonical signals of nitrogen availability, reciprocally regulate the phosphorylation state of the PTSNtr by direct effects on enzyme INtr autophosphorylation and the GAF signal transduction domain is necessary for the regulation of enzyme INtr activity by the two signal molecules. Taken together, our results suggest that the PTSNtr senses nitrogen availability.