SEARCH

SEARCH BY CITATION

References

  • Albrecht, A.M., and Vogel, H.J. (1964) Acetylornithine δ-transaminase: partial purification and repression behavior. J Biol Chem 239: 18721876.
  • Alves, R., and Savageau, M.A. (2005) Evidence of selection for low cognate amino acid bias in amino acid biosynthetic enzymes. Mol Microbiol 56: 10171034.
  • Barrios, H., Valderrama, B., and Morett, E. (1999) Compilation and analysis of σ54-dependent promoter sequences. Nucleic Acids Res 27: 43054313.
  • Battesti, A., Majdalani, N., and Gottesman, S. (2011) The RpoS-mediated general stress response in Escherichia coli. Annu Rev Microbiol 65: 189213.
  • Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248254.
  • Carper, S.W., Willis, D.G., Manning, K.A., and Gerner, E.W. (1991) Spermidine acetylation in response to a variety of stresses in Escherichia coli. J Biol Chem 266: 1243912441.
  • Chattopadhyay, M.K., Tabor, C.W., and Tabor, H. (2009) Polyamines are not required for aerobic growth of Escherichia coli: preparation of a strain with deletions in all of the genes for polyamine biosynthesis. J Bacteriol 191: 55495552.
  • Choy, H.E., and Adhya, S. (1992) Control of gal transcription through DNA looping: inhibition of the initial transcribing complex. Proc Natl Acad Sci USA 89: 1126411268.
  • Cohen, S.S. (1998) A Guide to the Polyamines. New York: Oxford University Press.
  • Datsenko, K.A., and Wanner, B.L. (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97: 66406645.
  • Dong, T., Yu, R., and Schellhorn, H. (2011) Antagonistic regulation of motility and transcriptome expression by RpoN and RpoS in Escherichia coli. Mol Microbiol 79: 375386.
  • Evans, M.R., Fink, R.C., Vazquez-Torres, A., Porwollik, S., Jones-Carson, J., McClelland, M., and Hassan, H.M. (2011) Analysis of the ArcA regulon in anaerobically grown Salmonella enterica sv. Typhimurium. BMC Microbiol 11: 58.
  • Frisch, R.L., and Bender, R.A. (2010) Properties of the NAC (nitrogen assimilation control protein)-binding site within the ureD promoter of Klebsiella pneumoniae. J Bacteriol 192: 48214826.
  • Fukuchi, J., Kashiwagi, K., Yamagishi, M., Ishihama, A., and Igarashi, K. (1995) Decrease in cell viability due to the accumulation of spermidine in spermidine acetyltransferase-deficient mutant of Escherichia coli. J Biol Chem 270: 1883118835.
  • Glansdorff, N. (1996) Biosynthesis of arginine and polyamines. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. Neidhardt, F.C. (ed.). Washington, DC: ASM Press, pp. 408433.
  • Haldimann, A., and Wanner, B.L. (2001) Conditional-replication, integration, excision, and retrieval plasmid–host systems for gene structure–function studies of bacteria. J Bacteriol 183: 63846393.
  • Kashiwagi, K., Miyamoto, S., Suzuki, F., Kobayashi, H., and Igarashi, K. (1992) Excretion of putrescine by the putrescine-ornithine antiporter encoded by the potE gene of Escherichia coli. Proc Natl Acad Sci USA 89: 45294533.
  • Kim, K.S., Pelton, J.G., Inwood, W.B., Andersen, U., Kustu, S., and Wemmer, D.E. (2010a) The Rut pathway for pyrimidine degradation: novel chemistry and toxicity problems. J Bacteriol 192: 40894102.
  • Kim, S.H., Schneider, B.L., and Reitzer, L. (2010b) Genetics and regulation of the major enzymes of alanine synthesis in Escherichia coli. J Bacteriol 192: 53045311.
  • Kiupakis, A.K., and Reitzer, L. (2002) ArgR-independent induction and ArgR-dependent superinduction of the astCADBE operon in Escherichia coli. J Bacteriol 184: 29402950.
  • Kurihara, S., Oda, S., Kato, K., Kim, H.G., Koyanagi, T., Kumagai, H., and Suzuki, H. (2005) A novel putrescine utilization pathway involves γ-glutamylated intermediates of Escherichia coli K-12. J Biol Chem 280: 46024608.
  • Kurihara, S., Oda, S., Tsuboi, Y., Kim, H.G., Oshida, M., Kumagai, H., and Suzuki, H. (2008) γ-Glutamylputrescine synthetase in the putrescine utilization pathway of Escherichia coli K-12. J Biol Chem 283: 1998119990.
  • Kurihara, S., Tsuboi, Y., Oda, S., Kim, H.G., Kumagai, H., and Suzuki, H. (2009) The putrescine importer PuuP of Escherichia coli K-12. J Bacteriol 191: 27762782.
  • Lowry, O.H., Rosebrough, N.J., Farr, L., and Randall, R.J. (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193: 265275.
  • Magasanik, B. (1996) Regulation of nitrogen utilization. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. Neidhardt, F.C. (ed.). Washington, DC: ASM Press, pp. 13441356.
  • Metzner, M., Germer, J., and Hengge, R. (2004) Multiple stress signal integration in the regulation of the complex σS-dependent csiD-ygaF-gabDTP operon in Escherichia coli. Mol Microbiol 51: 799811.
  • Miller, J.H. (1972) Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, pp. 352355.
  • Miller, J.H. (1992) A Short Course in Bacterial Genetics. Plainview, NY: Cold Spring Harbor Laboratory Press.
  • Muse, W.B., and Bender, R.A. (1998) The nac (nitrogen assimilation control) gene from Escherichia coli. J Bacteriol 180: 11661173.
  • Nemoto, N., Kurihara, S., Kitahara, Y., Asada, K., Kato, K., and Suzuki, H. (2012) Mechanism for regulation of the putrescine utilization pathway by the transcription factor PuuR in Escherichia coli K-12. J Bacteriol 194: 34373447.
  • Ninnis, R.L., Spall, S.K., Talbo, G.H., Truscott, K.N., and Dougan, D.A. (2009) Modification of PATase by L/F-transferase generates a ClpS-dependent N-end rule substrate in Escherichia coli. EMBO J 28: 17321744.
  • Partridge, J.D., Scott, C., Tang, Y., Poole, R.K., and Green, J. (2006) Escherichia coli transcriptome dynamics during the transition from anaerobic to aerobic conditions. J Biol Chem 281: 2780627815.
  • Reitzer, L. (2003) Nitrogen assimilation and global regulation in Escherichia coli. Annu Rev Microbiol 57: 155176.
  • Reitzer, L., and Schneider, B.L. (2001) Metabolic context and possible physiological themes of σ54-dependent genes in Escherichia coli. Microbiol Mol Biol Rev 65: 422444.
  • Rothstein, D.M., Pahel, G., Tyler, B., and Magasanik, B. (1980) Regulation of expression from the glnA promoter of Escherichia coli in the absence of glutamine synthetase. Proc Natl Acad Sci USA 77: 73727376.
  • Samsonova, N.N., Smirnov, S.V., Altman, I.B., and Ptitsyn, L.R. (2003) Molecular cloning and characterization of Escherichia coli K12 ygjG gene. BMC Microbiol 3: 2.
  • Savageau, M.A. (1983) Escherichia coli habitats, cell types, and molecular mechanisms of gene control. Am Nat 122: 732744.
  • Schiller, D., Kruse, D., Kneifel, H., Kramer, R., and Burkovski, A. (2000) Polyamine transport and role of potE in response to osmotic stress in Escherichia coli. J Bacteriol 182: 62476249.
  • Schneider, B.L., and Reitzer, L. (2012) Pathway and enzyme redundancy in putrescine catabolism in Escherichia coli. J Bacteriol 194: 40804088.
  • Schneider, B.L., Shiau, S.P., and Reitzer, L.J. (1991) Role of multiple environmental stimuli in control of transcription from a nitrogen-regulated promoter in Escherichia coli with weak or no activator-binding sites. J Bacteriol 173: 63556363.
  • Schneider, B.L., Kiupakis, A.K., and Reitzer, L.J. (1998) Arginine catabolism and the arginine succinyltransferase pathway in Escherichia coli. J Bacteriol 180: 42784286.
  • Schneider, B.L., Ruback, S., Kiupakis, A.K., Kasbarian, H., Pybus, C., and Reitzer, L. (2002) The Escherichia coli gabDTPC operon: specific γ-aminobutyrate catabolism and nonspecific induction. J Bacteriol 184: 69766986.
  • Tabor, C.W., and Tabor, H. (1985) Polyamines in microorganisms. Microbiol Rev 49: 8199.
  • Terui, Y., Higashi, K., Tabei, Y., Tomitori, H., Yamamoto, K., Ishihama, A., et al. (2009) Enhancement of the synthesis of RpoE and StpA by polyamines at the level of translation in Escherichia coli under heat shock conditions. J Bacteriol 191: 53485357.
  • Tweeddale, H., Notley-McRobb, L., and Ferenci, T. (1998) Effect of slow growth on metabolism of Escherichia coli, as revealed by global metabolite pool (‘metabolome’) analysis. J Bacteriol 180: 51095116.
  • Visick, J.E., and Clarke, S. (1997) RpoS- and OxyR-independent induction of HPI catalase at stationary phase in Escherichia coli and identification of rpoS mutations in common laboratory strains. J Bacteriol 179: 41584163.
  • Weber, H., Polen, T., Heuveling, J., Wendisch, V.F., and Hengge, R. (2005) Genome-wide analysis of the general stress response network in Escherichia coli: σS-dependent genes, promoters, and sigma factor selectivity. J Bacteriol 187: 15911603.
  • Xi, H., Schneider, B.L., and Reitzer, L. (2000) Purine catabolism in Escherichia coli and function of xanthine dehydrogenase in purine salvage. J Bacteriol 182: 53325341.
  • Yamada, H. (1971) Putrescine oxidase (Micrococcus rubens). In Methods in Enzymology XVIIB: Metabolism of Amino Acids and Amines. Tabor, H. , and Tabor, C.W. (eds). New York, NY: Academic Press, pp. 726730.
  • Yang, X.F., Ji, Y., Schneider, B.L., and Reitzer, L. (2004) Phosphorylation-independent dimer-dimer interactions by the enhancer-binding activator NtrC of Escherichia coli: a third function for the C-terminal domain. J Biol Chem 279: 3670836714.
  • Yohannes, E., Thurber, A.E., Wilks, J.C., Tate, D.P., and Slonczewski, J.L. (2005) Polyamine stress at high pH in Escherichia coli K-12. BMC Microbiol 5: 59.
  • Yoshida, M., Meksuriyen, D., Kashiwagi, K., Kawai, G., and Igarashi, K. (1999) Polyamine stimulation of the synthesis of oligopeptide-binding protein (OppA). Involvement of a structural change of the Shine–Dalgarno sequence and the initiation codon AUG in oppA mRNA. J Biol Chem 274: 2272322728.
  • Yoshida, M., Kashiwagi, K., Kawai, G., Ishihama, A., and Igarashi, K. (2001) Polyamine enhancement of the synthesis of adenylate cyclase at the translational level and the consequential stimulation of the synthesis of the RNA polymerase σ28 subunit. J Biol Chem 276: 1628916295.
  • Yoshida, M., Kashiwagi, K., Shigemasa, A., Taniguchi, S., Yamamoto, K., Makinoshima, H., et al. (2004) A unifying model for the role of polyamines in bacterial cell growth, the polyamine modulon. J Biol Chem 279: 4600846013.
  • Zimmer, D.P., Soupene, E., Lee, H.L., Wendisch, V.F., Khodursky, A.B., Peter, B.J., et al. (2000) Nitrogen regulatory protein C-controlled genes of Escherichia coli: scavenging as a defense against nitrogen limitation. Proc Natl Acad Sci USA 97: 1467414679.