SEARCH

SEARCH BY CITATION

References

  • Antonara, S., Chafel, R.M., LaFrance, M., and Coburn, J. (2007) Borrelia burgdorferi adhesins identified using in vivo phage display. Mol Microbiol 66: 262276.
  • Backert, S., Kwok, T., Schmid, M., Selbach, M., Moese, S., Peek, R.M., Jr., et al. (2005) Subproteomes of soluble and structure-bound Helicobacter pylori proteins analyzed by two-dimensional gel electrophoresis and mass spectrometry. Proteomics 5: 13311345.
  • Baud, C., Gutsche, I., Willery, E., de Paepe, D., Drobecq, H., Gilleron, M., et al. (2011) Membrane-associated DegP in Bordetella chaperones a repeat-rich secretory protein. Mol Microbiol 80: 16251636.
  • Baumler, A.J., Kusters, J.G., Stojiljkovic, I., and Heffron, F. (1994) Salmonella typhimurium loci involved in survival within macrophages. Infect Immun 62: 16231630.
  • Brissette, C.A., Haupt, K., Barthel, D., Cooley, A.E., Bowman, A., Skerka, C., et al. (2009) Borrelia burgdorferi infection-associated surface proteins ErpP, ErpA, and ErpC bind human plasminogen. Infect Immun 77: 300306.
  • Bryksin, A.V., Godfrey, H.P., Carbonaro, C.A., Wormser, G.P., Aguero-Rosenfeld, M.E., and Cabello, F.C. (2005) Borrelia burgdorferi BmpA, BmpB, and BmpD proteins are expressed in human infection and contribute to P39 immunoblot reactivity in patients with Lyme disease. Clin Diagn Lab Immunol 12: 935940.
  • Caimano, M.J., Kenedy, M.R., Kairu, T., Desrosiers, D.C., Harman, M., Dunham-Ems, S., et al. (2011) The hybrid histidine kinase Hk1 is part of a two-component system that is essential for survival of Borrelia burgdorferi in feeding Ixodes scapularis ticks. Infect Immun 79: 31173130.
  • Cassone, M., Gagne, A.L., Spruce, L.A., Seeholzer, S.H., and Sebert, M.E. (2012) The HtrA protease from Streptococcus pneumoniae digests both denatured proteins and the competence-stimulating peptide. J Biol Chem 287: 3844938459.
  • Charon, N.W., Cockburn, A., Li, C., Liu, J., Miller, K.A., Miller, M.R., et al. (2012) The unique paradigm of spirochete motility and chemotaxis. Annu Rev Microbiol 66: 349370.
  • Clausen, T., Kaiser, M., Huber, R., and Ehrmann, M. (2011) HTRA proteases: regulated proteolysis in protein quality control. Nat Rev Mol Cell Biol 12: 152162.
  • Coleman, J.L., and Benach, J.L. (2003) The urokinase receptor can be induced by Borrelia burgdorferi through receptors of the innate immune system. Infect Immun 71: 55565564.
  • Coleman, J.L., Gebbia, J.A., Piesman, J., Degen, J.L., Bugge, T.H., and Benach, J.L. (1997) Plasminogen is required for efficient dissemination of B. burgdorferi in ticks and for enhancement of spirochetemia in mice. Cell 89: 11111119.
  • Coleman, J.L., Roemer, E.J., and Benach, J.L. (1999) Plasmin-coated Borrelia burgdorferi degrades soluble and insoluble components of the mammalian extracellular matrix. Infect Immun 67: 39293936.
  • Coleman, J.L., Gebbia, J.A., and Benach, J.L. (2001) Borrelia burgdorferi and other bacterial products induce expression and release of the urokinase receptor (CD87). J Immunol 166: 473480.
  • Coleman, J.L., Katona, L.I., Kuhlow, C., Toledo, A., Okan, N.A., Tokarz, R., and Benach, J.L. (2009) Evidence that two ATP-dependent (Lon) proteases in Borrelia burgdorferi serve different functions. PLoS Pathog 5: e1000676.
  • Dalbey, R.E., Wang, P., and van Dijl, J.M. (2012) Membrane proteases in the bacterial protein secretion and quality control pathway. Microbiol Mol Biol Rev 76: 311330.
  • Dobrikova, E.Y., Bugrysheva, J., and Cabello, F.C. (2001) Two independent transcriptional units control the complex and simultaneous expression of the bmp paralogous chromosomal gene family in Borrelia burgdorferi. Mol Microbiol 39: 370378.
  • Ehrmann, M., and Clausen, T. (2004) Proteolysis as a regulatory mechanism. Annu Rev Genet 38: 709724.
  • Elias, A.F., Stewart, P.E., Grimm, D., Caimano, M.J., Eggers, C.H., Tilly, K., et al. (2002) Clonal polymorphism of Borrelia burgdorferi strain B31 MI: implications for mutagenesis in an infectious strain background. Infect Immun 70: 21392150.
  • Elzer, P.H., Phillips, R.W., Robertson, G.T., Roop, R.M., 2nd (1996) The HtrA stress response protease contributes to resistance of Brucella abortus to killing by murine phagocytes. Infect Immun 64: 48384841.
  • Fraser, C.M., Casjens, S., Huang, W.M., Sutton, G.G., Clayton, R., Lathigra, R., et al. (1997) Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390: 580586.
  • Gebbia, J.A., Monco, J.C., Degen, J.L., Bugge, T.H., and Benach, J.L. (1999) The plasminogen activation system enhances brain and heart invasion in murine relapsing fever borreliosis. J Clin Invest 103: 8187.
  • Guyard, C., Battisti, J.M., Raffel, S.J., Schrumpf, M.E., Whitney, A.R., Krum, J.G., et al. (2006) Relapsing fever spirochaetes produce a serine protease that provides resistance to oxidative stress and killing by neutrophils. Mol Microbiol 60: 710722.
  • Guzman, L.M., Belin, D., Carson, M.J., and Beckwith, J. (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177: 41214130.
  • Haile, W.B., Coleman, J.L., and Benach, J.L. (2006) Reciprocal upregulation of urokinase plasminogen activator and its inhibitor, PAI-2, by Borrelia burgdorferi affects bacterial penetration and host-inflammatory response. Cell Microbiol 8: 13491360.
  • Hovius, J.W., Bijlsma, M.F., van der Windt, G.J., Wiersinga, W.J., Boukens, B.J., Coumou, J., et al. (2009) The urokinase receptor (uPAR) facilitates clearance of Borrelia burgdorferi. PLoS Pathog 5: e1000447.
  • Hoy, B., Lower, M., Weydig, C., Carra, G., Tegtmeyer, N., Geppert, T., et al. (2010) Helicobacter pylori HtrA is a new secreted virulence factor that cleaves E-cadherin to disrupt intercellular adhesion. EMBO Rep 11: 798804.
  • Hoy, B., Geppert, T., Boehm, M., Reisen, F., Plattner, P., Gadermaier, G., et al. (2012) Distinct roles of secreted HtrA proteases from gram-negative pathogens in cleaving the junctional protein and tumor suppressor E-cadherin. J Biol Chem 287: 1011510120.
  • Ingmer, H., and Brondsted, L. (2009) Proteases in bacterial pathogenesis. Res Microbiol 160: 704710.
  • Iwanczyk, J., Damjanovic, D., Kooistra, J., Leong, V., Jomaa, A., Ghirlando, R., and Ortega, J. (2007) Role of the PDZ domains in Escherichia coli DegP protein. J Bacteriol 189: 31763186.
  • Jones, C.H., Bolken, T.C., Jones, K.F., Zeller, G.O., and Hruby, D.E. (2001) Conserved DegP protease in gram-positive bacteria is essential for thermal and oxidative tolerance and full virulence in Streptococcus pyogenes. Infect Immun 69: 55385545.
  • Katona, L.I., Ayalew, S., Coleman, J.L., and Benach, J.L. (2000) A bactericidal monoclonal antibody elicits a change in its antigen, OspB of Borrelia burgdorferi, that can be detected by limited proteolysis. J Immunol 164: 14251431.
  • Kenedy, M.R., Lenhart, T.R., and Akins, D.R. (2012) The role of Borrelia burgdorferi outer surface proteins. FEMS Immunol Med Microbiol 66: 119.
  • Kim, S., and Sauer, R.T. (2012) Cage assembly of DegP protease is not required for substrate-dependent regulation of proteolytic activity or high-temperature cell survival. Proc Natl Acad Sci USA 109: 72637268.
  • Krojer, T., Garrido-Franco, M., Huber, R., Ehrmann, M., and Clausen, T. (2002) Crystal structure of DegP (HtrA) reveals a new protease-chaperone machine. Nature 416: 455459.
  • Krojer, T., Sawa, J., Schafer, E., Saibil, H.R., Ehrmann, M., and Clausen, T. (2008) Structural basis for the regulated protease and chaperone function of DegP. Nature 453: 885890.
  • Kumru, O.S., Bunikis, I., Sorokina, I., Bergstrom, S., and Zuckert, W.R. (2011) Specificity and role of the Borrelia burgdorferi CtpA protease in outer membrane protein processing. J Bacteriol 193: 57595765.
  • LaRocca, T.J., Holthausen, D.J., Hsieh, C., Renken, C., Mannella, C.A., and Benach, J.L. (2009) The bactericidal effect of a complement-independent antibody is osmolytic and specific to Borrelia. Proc Natl Acad Sci USA 106: 1075210757.
  • LaRocca, T.J., Crowley, J.T., Cusack, B.J., Pathak, P., Benach, J., London, E., et al. (2010) Cholesterol lipids of Borrelia burgdorferi form lipid rafts and are required for the bactericidal activity of a complement-independent antibody. Cell Host Microbe 8: 331342.
  • Li, S.R., Dorrell, N., Everest, P.H., Dougan, G., and Wren, B.W. (1996) Construction and characterization of a Yersinia enterocolitica O:8 high-temperature requirement (htrA) isogenic mutant. Infect Immun 64: 20882094.
  • Li, X., Pal, U., Ramamoorthi, N., Liu, X., Desrosiers, D.C., Eggers, C.H., et al. (2007) The Lyme disease agent Borrelia burgdorferi requires BB0690, a Dps homologue, to persist within ticks. Mol Microbiol 63: 694710.
  • Lipinska, B., Fayet, O., Baird, L., and Georgopoulos, C. (1989) Identification, characterization, and mapping of the Escherichia coli htrA gene, whose product is essential for bacterial growth only at elevated temperatures. J Bacteriol 171: 15741584.
  • Lipinska, B., Zylicz, M., and Georgopoulos, C. (1990) The HtrA (DegP) protein, essential for Escherichia coli survival at high temperatures, is an endopeptidase. J Bacteriol 172: 17911797.
  • Lipkow, K. (2006) Changing cellular location of CheZ predicted by molecular simulations. PLoS Comput Biol 2: e39.
  • Loosmore, S.M., Yang, Y.P., Oomen, R., Shortreed, J.M., Coleman, D.C., and Klein, M.H. (1998) The Haemophilus influenzae HtrA protein is a protective antigen. Infect Immun 66: 899906.
  • Lower, M., Weydig, C., Metzler, D., Reuter, A., Starzinski-Powitz, A., Wessler, S., and Schneider, G. (2008) Prediction of extracellular proteases of the human pathogen Helicobacter pylori reveals proteolytic activity of the Hp1018/19 protein HtrA. PLoS ONE 3: e3510.
  • McBroom, A.J., and Kuehn, M.J. (2007) Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response. Mol Microbiol 63: 545558.
  • Meltzer, M., Hasenbein, S., Hauske, P., Kucz, N., Merdanovic, M., Grau, S., et al. (2008) Allosteric activation of HtrA protease DegP by stress signals during bacterial protein quality control. Angew Chem Int Ed Engl 47: 13321334.
  • Meltzer, M., Hasenbein, S., Mamant, N., Merdanovic, M., Poepsel, S., Hauske, P., et al. (2009) Structure, function and regulation of the conserved serine proteases DegP and DegS of Escherichia coli. Res Microbiol 160: 660666.
  • Merdanovic, M., Clausen, T., Kaiser, M., Huber, R., and Ehrmann, M. (2011) Protein quality control in the bacterial periplasm. Annu Rev Microbiol 65: 149168.
  • Motaleb, M.A., Miller, M.R., Li, C., Bakker, R.G., Goldstein, S.F., Silversmith, R.E., et al. (2005) CheX is a phosphorylated CheY phosphatase essential for Borrelia burgdorferi chemotaxis. J Bacteriol 187: 79637969.
  • Motaleb, M.A., Sultan, S.Z., Miller, M.R., Li, C., and Charon, N.W. (2011a) CheY3 of Borrelia burgdorferi is the key response regulator essential for chemotaxis and forms a long-lived phosphorylated intermediate. J Bacteriol 193: 33323341.
  • Motaleb, M.A., Pitzer, J.E., Sultan, S.Z., and Liu, J. (2011b) A novel gene inactivation system reveals altered periplasmic flagellar orientation in a Borrelia burgdorferi fliL mutant. J Bacteriol 193: 33243331.
  • Muff, T.J., Foster, R.M., Liu, P.J., and Ordal, G.W. (2007) CheX in the three-phosphatase system of bacterial chemotaxis. J Bacteriol 189: 70077013.
  • Nordstrand, A., Shamaei-Tousi, A., Ny, A., and Bergstrom, S. (2001) Delayed invasion of the kidney and brain by Borrelia crocidurae in plasminogen-deficient mice. Infect Immun 69: 58325839.
  • Pal, U., Dai, J., Li, X., Neelakanta, G., Luo, P., Kumar, M., et al. (2008) A differential role for BB0365 in the persistence of Borrelia burgdorferi in mice and ticks. J Infect Dis 197: 148155.
  • Pallen, M.J., and Wren, B.W. (1997) The HtrA family of serine proteases. Mol Microbiol 26: 209221.
  • Pazy, Y., Motaleb, M.A., Guarnieri, M.T., Charon, N.W., Zhao, R., and Silversmith, R.E. (2010) Identical phosphatase mechanisms achieved through distinct modes of binding phosphoprotein substrate. Proc Natl Acad Sci USA 107: 19241929.
  • Petersen, T.N., Brunak, S., von Heijne, G., and Nielsen, H. (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8: 785786.
  • Raivio, T.L. (2005) Envelope stress responses and Gram-negative bacterial pathogenesis. Mol Microbiol 56: 11191128.
  • Ramamoorthy, R., and Philipp, M.T. (1998) Differential expression of Borrelia burgdorferi proteins during growth in vitro. Infect Immun 66: 51195124.
  • Ramamoorthy, R., Povinelli, L., and Philipp, M.T. (1996) Molecular characterization, genomic arrangement, and expression of bmpD, a new member of the bmp class of genes encoding membrane proteins of Borrelia burgdorferi. Infect Immun 64: 12591264.
  • Sawa, J., Heuck, A., Ehrmann, M., and Clausen, T. (2010) Molecular transformers in the cell: lessons learned from the DegP protease-chaperone. Curr Opin Struct Biol 20: 253258.
  • Sela-Abramovich, S., Chitlaru, T., Gat, O., Grosfeld, H., Cohen, O., and Shafferman, A. (2009) Novel and unique diagnostic biomarkers for Bacillus anthracis infection. Appl Environ Microbiol 75: 61576167.
  • Seol, J.H., Woo, S.K., Jung, E.M., Yoo, S.J., Lee, C.S., Kim, K.J., et al. (1991) Protease Do is essential for survival of Escherichia coli at high temperatures: its identity with the htrA gene product. Biochem Biophys Res Commun 176: 730736.
  • Singh, N., Kuppili, R.R., and Bose, K. (2011) The structural basis of mode of activation and functional diversity: a case study with HtrA family of serine proteases. Arch Biochem Biophys 516: 8596.
  • Skorko-Glonek, J., Zurawa, D., Tanfani, F., Scire, A., Wawrzynow, A., Narkiewicz, J., et al. (2003) The N-terminal region of HtrA heat shock protease from Escherichia coli is essential for stabilization of HtrA primary structure and maintaining of its oligomeric structure. Biochim Biophys Acta 1649: 171182.
  • Skorko-Glonek, J., Sobiecka-Szkatula, A., Narkiewicz, J., and Lipinska, B. (2008) The proteolytic activity of the HtrA (DegP) protein from Escherichia coli at low temperatures. Microbiology 154: 36493658.
  • Sourjik, V., and Berg, H.C. (2000) Localization of components of the chemotaxis machinery of Escherichia coli using fluorescent protein fusions. Mol Microbiol 37: 740751.
  • Spiess, C., Beil, A., and Ehrmann, M. (1999) A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein. Cell 97: 339347.
  • Sultan, S.Z., Pitzer, J.E., Miller, M.R., and Motaleb, M.A. (2010) Analysis of a Borrelia burgdorferi phosphodiesterase demonstrates a role for cyclic-di-guanosine monophosphate in motility and virulence. Mol Microbiol 77: 128142.
  • Sultan, S.Z., Pitzer, J.E., Boquoi, T., Hobbs, G., Miller, M.R., and Motaleb, M.A. (2011) Analysis of the HD-GYP domain cyclic dimeric GMP phosphodiesterase reveals a role in motility and the enzootic life cycle of Borrelia burgdorferi. Infect Immun 79: 32733283.
  • Swamy, K.H., Chung, C.H., and Goldberg, A.L. (1983) Isolation and characterization of protease do from Escherichia coli, a large serine protease containing multiple subunits. Arch Biochem Biophys 224: 543554.
  • Toledo, A., Coleman, J.L., Kuhlow, C.J., Crowley, J.T., and Benach, J.L. (2012) The enolase of Borrelia burgdorferi is a plasminogen receptor released in outer membrane vesicles. Infect Immun 80: 359368.
  • Tomb, J.F., White, O., Kerlavage, A.R., Clayton, R.A., Sutton, G.G., Fleischmann, R.D., et al. (1997) The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388: 539547.
  • Twining, S.S. (1984) Fluorescein isothiocyanate-labeled casein assay for proteolytic enzymes. Anal Biochem 143: 3034.
  • Verma, A., Brissette, C.A., Bowman, A., and Stevenson, B. (2009) Borrelia burgdorferi BmpA is a laminin-binding protein. Infect Immun 77: 49404946.
  • Waller, P.R., and Sauer, R.T. (1996) Characterization of degQ and degS, Escherichia coli genes encoding homologs of the DegP protease. J Bacteriol 178: 11461153.
  • White, M.J., Savaryn, J.P., Bretl, D.J., He, H., Penoske, R.M., Terhune, S.S., and Zahrt, T.C. (2011) The HtrA-like serine protease PepD interacts with and modulates the Mycobacterium tuberculosis 35-kDa antigen outer envelope protein. PLoS ONE 6: e18175.
  • Zimmermann, P., Meerschaert, K., Reekmans, G., Leenaerts, I., Small, J.V., Vandekerckhove, J., et al. (2002) PIP(2)-PDZ domain binding controls the association of syntenin with the plasma membrane. Mol Cell 9: 12151225.