SEARCH

SEARCH BY CITATION

References

  • Aebi, H. (1984) Catalase in vitro. Methods Enzymol 105: 121126.
  • Baudin, A., Ozier-Kalogeropoulos, O., Denouel, A., Lacroute, F., and Cullin, C. (1993) A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res 21: 33293330.
  • Bedalov, A., Hirao, M., Posakony, J., Nelson, M., and Simon, J.A. (2003) NAD+-dependent deacetylase Hst1p controls biosynthesis and cellular NAD+ levels in Saccharomyces cerevisiae. Mol Cell Biol 23: 70447054.
  • Bennett, J.E., Izumikawa, K., and Marr, K.A. (2004) Mechanism of increased fluconazole resistance in Candida glabrata during prophylaxis. Antimicrob Agents Chemother 48: 17731777.
  • Bitterman, K.J., Anderson, R.M., Cohen, H.Y., Latorre-Esteves, M., and Sinclair, D.A. (2002) Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast Sir2 and human SIRT1. J Biol Chem 277: 4509945107.
  • Borst, A., Raimer, M.T., Warnock, D.W., Morrison, C.J., and Arthington-Skaggs, B.A. (2005) Rapid acquisition of stable azole resistance by Candida glabrata isolates obtained before the clinical introduction of fluconazole. Antimicrob Agents Chemother 49: 783787.
  • Brachmann, C.B., Davies, A., Cost, G.J., Caputo, E., Li, J., Hieter, P., and Boeke, J.D. (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14: 115132.
  • Brun, S., Berges, T., Poupard, P., Vauzelle-Moreau, C., Renier, G., Chabasse, D., and Bouchara, J. (2004) Mechanisms of azole resistance in petite mutants of Candida glabrata. Antimicrob Agents Chemother 48: 17881796.
  • Cannon, R.D., Lamping, E., Holmes, A.R., Niimi, K., Baret, P.V., Keniya, M.V., et al. (2009) Efflux-mediated antifungal drug resistance. Clin Microbiol Rev 22: 291321.
  • Castano, I., Kaur, R., Pan, S., Cregg, R., Penas Ade, L., Guo, N., et al. (2003) Tn7-based genome-wide random insertional mutagenesis of Candida glabrata. Genome Res 13: 905915.
  • Castano, I., Pan, S.J., Zupancic, M., Hennequin, C., Dujon, B., and Cormack, B.P. (2005) Telomere length control and transcriptional regulation of subtelomeric adhesins in Candida glabrata. Mol Microbiol 55: 12461258.
  • Cormack, B.P., and Falkow, S. (1999) Efficient homologous and illegitimate recombination in the opportunistic yeast pathogen Candida glabrata. Genetics 151: 979987.
  • Cormack, B.P., Ghori, N., and Falkow, S. (1999) An adhesin of the yeast pathogen Candida glabrata mediating adherence to human epithelial cells. Science 285: 578582.
  • Cuellar-Cruz, M., Briones-Martin-del-Campo, M., Canas-Villamar, I., Montalvo-Arredondo, J., Riego-Ruiz, L., Castano, I., and De Las Penas, A. (2008) High resistance to oxidative stress in the fungal pathogen Candida glabrata is mediated by a single catalase, Cta1p, and is controlled by the transcription factors Yap1p, Skn7p, Msn2p, and Msn4p. Eukaryot Cell 7: 814825.
  • Cuellar-Cruz, M., Castano, I., Arroyo-Helguera, O., and De Las Penas, A. (2009) Oxidative stress response to menadione and cumene hydroperoxide in the opportunistic fungal pathogen Candida glabrata. Mem Inst Oswaldo Cruz 104: 649654.
  • De Las Penas, A., Pan, S.J., Castano, I., Alder, J., Cregg, R., and Cormack, B.P. (2003) Virulence-related surface glycoproteins in the yeast pathogen Candida glabrata are encoded in subtelomeric clusters and subject to RAP1- and SIR-dependent transcriptional silencing. Genes Dev 17: 22452258.
  • Domergue, R., Castano, I., De Las Penas, A., Zupancic, M., Lockatell, V., Hebel, J.R., et al. (2005) Nicotinic acid limitation regulates silencing of Candida adhesins during UTI. Science 308: 866870.
  • Ferrari, S., Ischer, F., Calabrese, D., Posteraro, B., Sanguinetti, M., Fadda, G., et al. (2009) Gain of function mutations in CgPDR1 of Candida glabrata not only mediate antifungal resistance but also enhance virulence. PLoS Pathog 5: e1000268.
  • Ferrari, S., Sanguinetti, M., De Bernardis, F., Torelli, R., Posteraro, B., Vandeputte, P., and Sanglard, D. (2011) Loss of mitochondrial functions associated with azole resistance in Candida glabrata also results in enhanced virulence in mice. Antimicrob Agents Chemother 55: 18521860.
  • Fidel, P.L., Jr, Cutright, J.L., Tait, L., and Sobel, J.D. (1996) A murine model of Candida glabrata vaginitis. J Infect Dis 173: 425431.
  • Finkel, T., Deng, C.X., and Mostoslavsky, R. (2009) Recent progress in the biology and physiology of sirtuins. Nature 460: 587591.
  • Foloppe, N., and Nilsson, L. (2004) The glutaredoxin-C-P-Y-C-motif: influence of peripheral residues. Structure 12: 289300.
  • Froyd, C.A., and Rusche, L.N. (2011) The duplicated deacetylases Sir2 and Hst1 subfunctionalized by acquiring complementary inactivating mutations. Mol Cell Biol 31: 33513365.
  • Fukuda, Y., Tsai, H.F., Myers, T.G., and Bennett, J.E. (2013) Transcriptional profiling of Candida glabrata during phagocytosis by neutrophils and in the infected mouse spleen. Infect Immun 81: 13251333.
  • Greiss, S., and Gartner, A. (2009) Sirtuin/Sir2 phylogeny, evolutionary considerations and structural conservation. Mol Cells 28: 407415.
  • Hirao, M., Posakony, J., Nelson, M., Hruby, H., Jung, M., Simon, J.A., and Bedalov, A. (2003) Identification of selective inhibitors of NAD+-dependent deacetylases using phenotypic screens in yeast. J Biol Chem 278: 5277352782.
  • Izumikawa, K., Kakeya, H., Tsai, H.F., Grimberg, B., and Bennett, J.E. (2003) Function of Candida glabrata ABC transporter gene, PDH1. Yeast 20: 249261.
  • Kaur, R., Castano, I., and Cormack, B. (2004) Functional genomic analysis of fluconazole susceptibility in the pathogenic yeast Candida glabrata: roles of calcium signaling and mitochondria. Antimicrob Agents Chemother 48: 16001613.
  • Kaur, R., Ma, B., and Cormack, B. (2007) A family of glycosylphosphatidylinositol-linked aspartyl proteases is required for virulence of Candida glabrata. Proc Natl Acad Sci USA 104: 76287633.
  • Ma, B., Pan, S.J., Zupancic, M.L., and Cormack, B.P. (2007) Assimilation of NAD+ precursors in Candida glabrata. Mol Microbiol 66: 1425.
  • Ma, B., Pan, S.J., Domergue, R., Rigby, T., Whiteway, M., Johnson, D., and Cormack, B.P. (2009) High affinity transporters for NAD+ precursors in Candida glabrata are regulated by Hst1 and induced in response to niacin limitation. Mol Cell Biol 29: 40674079.
  • McCord, R., Pierce, M., Xie, J., Wonkatal, S., Mickel, C., and Vershon, A.K. (2003) Rfm1, a novel tethering factor required to recruit the Hst1 histone deacetylase for repression of middle sporulation genes. Mol Cell Biol 23: 20092016.
  • Mead, J., McCord, R., Youngster, L., Sharma, M., Gartenberg, M.R., and Vershon, A.K. (2007) Swapping the gene-specific and regional silencing specificities of the Hst1 and Sir2 histone deacetylases. Mol Cell Biol 27: 24662475.
  • Mesquita, A., Weinberger, M., Silva, A., Sampaio-Marques, B., Almeida, B., Leao, C., et al. (2010) Caloric restriction or catalase inactivation extends yeast chronological lifespan by inducing H2O2 and superoxide dismutase activity. Proc Natl Acad Sci USA 107: 1512315128.
  • Moazed, D., Kistler, A., Axelrod, A., Rine, J., and Johnson, A.D. (1997) Silent information regulator protein complexes in Saccharomyces cerevisiae: a SIR2/SIR4 complex and evidence for a regulatory domain in SIR4 that inhibits its interaction with SIR3. Proc Natl Acad Sci USA 94: 21862191.
  • Nevitt, T., and Thiele, D.J. (2011) Host iron withholding demands siderophore utilization for Candida glabrata to survive macrophage killing. PLoS Pathog 7: e1001322.
  • Noble, J.A., Tsai, H.F., Suffis, S.D., Su, Q., Myers, T.G., and Bennett, J.E. (2013) STB5 Is a Negative Regulator of Azole Resistance in Candida glabrata. Antimicrob Agents Chemother 57: 959967.
  • Pfaller, M.A., and Diekema, D.J. (2010) Epidemiology of invasive mycoses in North America. Crit Rev Microbiol 36: 153.
  • Pfaller, M.A., Diekema, D.J., Gibbs, D.L., Newell, V.A., Ellis, D., Tullio, V., et al. (2010) Results from the ARTEMIS DISK Global Antifungal Surveillance Study, 1997 to 2007: a 10.5-year analysis of susceptibilities of Candida Species to fluconazole and voriconazole as determined by CLSI standardized disk diffusion. J Clin Microbiol 48: 13661377.
  • Polakova, S., Blume, C., Zarate, J.A., Mentel, M., Jorck-Ramberg, D., Stenderup, J., and Piskur, J. (2009) Formation of new chromosomes as a virulence mechanism in yeast Candida glabrata. Proc Natl Acad Sci USA 106: 26882693.
  • Rai, M.N., Balusu, S., Gorityala, N., Dandu, L., and Kaur, R. (2012) Functional genomic analysis of Candida glabrata-macrophage interaction: role of chromatin remodeling in virulence. PLoS Pathog 8: e1002863.
  • Richardson, M., and Lass-Florl, C. (2008) Changing epidemiology of systemic fungal infections. Clin Microbiol Infect 14 (Suppl. 4): 524.
  • Roetzer, A., Gratz, N., Kovarik, P., and Schuller, C. (2010) Autophagy supports Candida glabrata survival during phagocytosis. Cell Microbiol 12: 199216.
  • Roetzer, A., Klopf, E., Gratz, N., Marcet-Houben, M., Hiller, E., Rupp, S., et al. (2011) Regulation of Candida glabrata oxidative stress resistance is adapted to host environment. FEBS Lett 585: 319327.
  • Rosas-Hernandez, L.L., Juarez-Reyes, A., Arroyo-Helguera, O.E., De Las Penas, A., Pan, S.J., Cormack, B.P., and Castano, I. (2008) yKu70/yKu80 and Rif1 regulate silencing differentially at telomeres in Candida glabrata. Eukaryot Cell 7: 21682178.
  • Saijo, T., Miyazaki, T., Izumikawa, K., Mihara, T., Takazono, T., Kosai, K., et al. (2010) Skn7 is involved in oxidative stress response and virulence of Candida glabrata. Mycopathologia 169: 8190.
  • Sanglard, D., Ischer, F., Calabrese, D., Majcherczyk, P.A., and Bille, J. (1999) The ATP binding cassette transporter gene CgCDR1 from Candida glabrata is involved in the resistance of clinical isolates to azole antifungal agents. Antimicrob Agents Chemother 43: 27532765.
  • Sanguinetti, M., Posteraro, B., Fiori, B., Ranno, S., Torelli, R., and Fadda, G. (2005) Mechanisms of azole resistance in clinical isolates of Candida glabrata collected during a hospital survey of antifungal resistance. Antimicrob Agents Chemother 49: 668679.
  • Sauve, A.A., Wolberger, C., Schramm, V.L., and Boeke, J.D. (2006) The biochemistry of sirtuins. Annu Rev Biochem 75: 435465.
  • Seider, K., Brunke, S., Schild, L., Jablonowski, N., Wilson, D., Majer, O., et al. (2011) The facultative intracellular pathogen Candida glabrata subverts macrophage cytokine production and phagolysosome maturation. J Immunol 187: 30723086.
  • Sherman, J.M., Stone, E.M., Freeman-Cook, L.L., Brachmann, C.B., Boeke, J.D., and Pillus, L. (1999) The conserved core of a human SIR2 homologue functions in yeast silencing. Mol Biol Cell 10: 30453059.
  • Tanny, J.C., Dowd, G.J., Huang, J., Hilz, H., and Moazed, D. (1999) An enzymatic activity in the yeast Sir2 protein that is essential for gene silencing. Cell 99: 735745.
  • Vaquero, A. (2009) The conserved role of sirtuins in chromatin regulation. Int J Dev Biol 53: 303322.
  • Vermitsky, J.P., and Edlind, T.D. (2004) Azole resistance in Candida glabrata: coordinate upregulation of multidrug transporters and evidence for a Pdr1-like transcription factor. Antimicrob Agents Chemother 48: 37733781.
  • Xie, J., Pierce, M., Gailus-Durner, V., Wagner, M., Winter, E., and Vershon, A.K. (1999) Sum1 and Hst1 repress middle sporulation-specific gene expression during mitosis in Saccharomyces cerevisiae. EMBO J 18: 64486454.