SEARCH

SEARCH BY CITATION

References

  • Arabolaza, A., D'Angelo, M., Comba, S., and Gramajo, H. (2010) FasR, a novel class of transcriptional regulator, governs the activation of fatty acid biosynthesis genes in Streptomyces coelicolor. Mol Microbiol 78: 4763.
  • Bacon, J., and Marsh, P.D. (2007) Transcriptional responses of Mycobacterium tuberculosis exposed to adverse conditions in vitro. Curr Mol Med 7: 277286.
  • Bailey, T.L., and Elkan, C. (1995) The value of prior knowledge in discovering motifs with MEME. Proc Int Conf Intell Syst Mol Biol 3: 2129.
  • Bailey, T.L., and Gribskov, M. (1998) Methods and statistics for combining motif match scores. J Comput Biol 5: 211221.
  • Bhatt, A., Fujiwara, N., Bhatt, K., Gurcha, S.S., Kremer, L., Chen, B., et al. (2007a) Deletion of kasB in Mycobacterium tuberculosis causes loss of acid-fastness and subclinical latent tuberculosis in immunocompetent mice. Proc Natl Acad Sci USA 104: 51575162.
  • Bhatt, A., Molle, V., Besra, G.S., Jacobs, W.R., Jr, and Kremer, L. (2007b) The Mycobacterium tuberculosis FAS-II condensing enzymes: their role in mycolic acid biosynthesis, acid-fastness, pathogenesis and in future drug development. Mol Microbiol 64: 14421454.
  • Bloch, K. (1975) Fatty acid synthases from Mycobacterium phlei. Methods Enzymol 35: 8490.
  • Boldrin, F., Casonato, S., Dainese, E., Sala, C., Dhar, N., Palu, G., et al. (2010) Development of a repressible mycobacterial promoter system based on two transcriptional repressors. Nucleic Acids Res 38: e134.
  • Brennan, P.J., and Crick, D.C. (2007) The cell-wall core of Mycobacterium tuberculosis in the context of drug discovery. Curr Top Med Chem 7: 475488.
  • Brennan, P.J., and Nikaido, H. (1995) The envelope of mycobacteria. Annu Rev Biochem 64: 2963.
  • Butala, M., Zgur-Bertok, D., and Busby, S.J. (2009) The bacterial LexA transcriptional repressor. Cell Mol Life Sci 66: 8293.
  • Campbell, J.W., and Cronan, J.E., Jr (2001) Escherichia coli FadR positively regulates transcription of the fabB fatty acid biosynthetic gene. J Bacteriol 183: 59825990.
  • Chalut, C., Botella, L., de Sousa-D'Auria, C., Houssin, C., and Guilhot, C. (2006) The nonredundant roles of two 4′-phosphopantetheinyl transferases in vital processes of Mycobacteria. Proc Natl Acad Sci USA 103: 85118516.
  • Connell, N.D. (1994) Mycobacterium: isolation, maintenance, transformation, and mutant selection. Methods Cell Biol 45: 107125.
  • Daffe, M. (2008) The global architecture of the mycobacteria cell envelope. In The Mycobacterial Cell Envelope. Daffe, M., and Reyrat, J.M. (eds). Washington, DC: ASM Press, pp. 312.
  • Daffe, M., and Draper, P. (1998) The envelope layers of mycobacteria with reference to their pathogenicity. Adv Microb Physiol 39: 131203.
  • Daniel, J., Deb, C., Dubey, V., Sirakova, T., Abomoelak, B., Morbidoni, H., and Kolattukudy, P. (2004) Induction of a novel class of diacylglycerol acyltransferases and triacylglycerol accumulation in Mycobacterium tuberculosis as it goes into a dormancy-like state in culture. J Bacteriol 186: 50175030.
  • Deb, C., Lee, C.M., Dubey, V.S., Daniel, J., Abomoelak, B., Sirakova, T.D., et al. (2009) A novel in vitro multiple-stress dormancy model for Mycobacterium tuberculosis generates a lipid-loaded, drug-tolerant, dormant pathogen. PLoS ONE 4: e6077.
  • DiRusso, C.C., Heimert, T.L., and Metzger, A.K. (1992) Characterization of FadR, a global transcriptional regulator of fatty acid metabolism in Escherichia coli. Interaction with the fadB promoter is prevented by long chain fatty acyl coenzyme A. J Biol Chem 267: 86858691.
  • Dubnau, E., Chan, J., Raynaud, C., Mohan, V.P., Laneelle, M.A., Yu, K., et al. (2000) Oxygenated mycolic acids are necessary for virulence of Mycobacterium tuberculosis in mice. Mol Microbiol 36: 630637.
  • Dussurget, O., Timm, J., Gomez, M., Gold, B., Yu, S., Sabol, S.Z., et al. (1999) Transcriptional control of the iron-responsive fxbA gene by the mycobacterial regulator IdeR. J Bacteriol 181: 34023408.
  • Feng, Y., and Cronan, J.E. (2011) Complex binding of the FabR repressor of bacterial unsaturated fatty acid biosynthesis to its cognate promoters. Mol Microbiol 80: 195218.
  • Glickman, M.S., Cox, J.S., and Jacobs, W.R., Jr (2000) A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis. Mol Cell 5: 717727.
  • Griffin, J.E., Gawronski, J.D., Dejesus, M.A., Ioerger, T.R., Akerley, B.J., and Sassetti, C.M. (2011) High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLoS Pathog 7: e1002251.
  • Grkovic, S., Brown, M.H., Roberts, N.J., Paulsen, I.T., and Skurray, R.A. (1998) QacR is a repressor protein that regulates expression of the Staphylococcus aureus multidrug efflux pump QacA. J Biol Chem 273: 1866518673.
  • Hanahan, D. (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166: 557580.
  • Henry, M.F., and Cronan, J.E., Jr (1991) Escherichia coli transcription factor that both activates fatty acid synthesis and represses fatty acid degradation. J Mol Biol 222: 843849.
  • Higo, A., Horinouchi, S., and Ohnishi, Y. (2011) Strict regulation of morphological differentiation and secondary metabolism by a positive feedback loop between two global regulators AdpA and BldA in Streptomyces griseus. Mol Microbiol 81: 16071622.
  • Jerga, A., and Rock, C.O. (2009) Acyl-Acyl carrier protein regulates transcription of fatty acid biosynthetic genes via the FabT repressor in Streptococcus pneumoniae. J Biol Chem 284: 1536415368.
  • Jourlin-Castelli, C., Mani, N., Nakano, M.M., and Sonenshein, A.L. (2000) CcpC, a novel regulator of the LysR family required for glucose repression of the citB gene in Bacillus subtilis. J Mol Biol 295: 865878.
  • Kaur, D., Guerin, M.E., Skovierova, H., Brennan, P.J., and Jackson, M. (2009) Biogenesis of the cell wall and other glycoconjugates of Mycobacterium tuberculosis. Adv Appl Microbiol 69: 2378.
  • Kremer, L., Douglas, J.D., Baulard, A.R., Morehouse, C., Guy, M.R., Alland, D., et al. (2000) Thiolactomycin and related analogues as novel anti-mycobacterial agents targeting KasA and KasB condensing enzymes in Mycobacterium tuberculosis. J Biol Chem 275: 1685716864.
  • Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680685.
  • Lambalot, R.H., Gehring, A.M., Flugel, R.S., Zuber, P., LaCelle, M., Marahiel, M.A., et al. (1996) A new enzyme superfamily – the phosphopantetheinyl transferases. Chem Biol 3: 923936.
  • Lu, Y.J., and Rock, C.O. (2006) Transcriptional regulation of fatty acid biosynthesis in Streptococcus pneumoniae. Mol Microbiol 59: 551566.
  • McKinney, J.D., Honer zu Bentrup, K., Munoz-Elias, E.J., Miczak, A., Chen, B., Chan, W.T., et al. (2000) Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406: 735738.
  • Miller, J.H. (1972) Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  • Molle, V., Brown, A.K., Besra, G.S., Cozzone, A.J., and Kremer, L. (2006) The condensing activities of the Mycobacterium tuberculosis type II fatty acid synthase are differentially regulated by phosphorylation. J Biol Chem 281: 3009430103.
  • Munoz-Elias, E.J., and McKinney, J.D. (2006) Carbon metabolism of intracellular bacteria. Cell Microbiol 8: 1022.
  • Nickel, J., Irzik, K., van Ooyen, J., and Eggeling, L. (2010) The TetR-type transcriptional regulator FasR of Corynebacterium glutamicum controls genes of lipid synthesis during growth on acetate. Mol Microbiol 78: 253265.
  • Orth, P., Schnappinger, D., Hillen, W., Saenger, W., and Hinrichs, W. (2000) Structural basis of gene regulation by the tetracycline inducible Tet repressor-operator system. Nat Struct Biol 7: 215219.
  • Pelicic, V., Jackson, M., Reyrat, J.M., Jacobs, W.R., Jr, Gicquel, B., and Guilhot, C. (1997) Efficient allelic exchange and transposon mutagenesis in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 94: 1095510960.
  • Pfaffl, M.W. (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29: e45.
  • Ramos, J.L., Martinez-Bueno, M., Molina-Henares, A.J., Teran, W., Watanabe, K., Zhang, X., et al. (2005) The TetR family of transcriptional repressors. Microbiol Mol Biol Rev 69: 326356.
  • Rao, V., Gao, F., Chen, B., Jacobs, W.R., Jr, and Glickman, M.S. (2006) Trans-cyclopropanation of mycolic acids on trehalose dimycolate suppresses Mycobacterium tuberculosis-induced inflammation and virulence. J Clin Invest 116: 16601667.
  • Salzman, V., Mondino, S., Sala, C., Cole, S.T., Gago, G., and Gramajo, H. (2010) Transcriptional regulation of lipid homeostasis in mycobacteria. Mol Microbiol 78: 6477.
  • Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  • Schnappinger, D., Ehrt, S., Voskuil, M.I., Liu, Y., Mangan, J.A., Monahan, I.M., et al. (2003) Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J Exp Med 198: 693704.
  • Schujman, G.E., Paoletti, L., Grossman, A.D., and de Mendoza, D. (2003) FapR, a bacterial transcription factor involved in global regulation of membrane lipid biosynthesis. Dev Cell 4: 663672.
  • Schujman, G.E., Guerin, M., Buschiazzo, A., Schaeffer, F., Llarrull, L.I., Reh, G., et al. (2006) Structural basis of lipid biosynthesis regulation in Gram-positive bacteria. EMBO J 25: 40744083.
  • Schweizer, E., and Hofmann, J. (2004) Microbial type I fatty acid synthases (FAS): major players in a network of cellular FAS systems. Microbiol Mol Biol Rev 68: 501517.
  • Simons, R.W., Egan, P.A., Chute, H.T., and Nunn, W.D. (1980) Regulation of fatty acid degradation in Escherichia coli: isolation and characterization of strains bearing insertion and temperature-sensitive mutations in gene fadR. J Bacteriol 142: 621632.
  • Slama, N., Leiba, J., Eynard, N., Daffe, M., Kremer, L., Quemard, A., and Molle, V. (2011) Negative regulation by Ser/Thr phosphorylation of HadAB and HadBC dehydratases from Mycobacterium tuberculosis type II fatty acid synthase system. Biochem Biophys Res Commun 412: 401406.
  • Snapper, S.B., Melton, R.E., Mustafa, S., Kieser, T., and Jacobs, W.R., Jr (1990) Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol Microbiol 4: 19111919.
  • Studier, F.W., and Moffatt, B.A. (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189: 113130.
  • Takayama, K., Wang, C., and Besra, G.S. (2005) Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin Microbiol Rev 18: 81101.
  • Veyron-Churlet, R., Molle, V., Taylor, R.C., Brown, A.K., Besra, G.S., Zanella-Cleon, I., et al. (2009) The Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein synthase III activity is inhibited by phosphorylation on a single threonine residue. J Biol Chem 284: 64146424.
  • Walsh, C.T., Gehring, A.M., Weinreb, P.H., Quadri, L.E., and Flugel, R.S. (1997) Post-translational modification of polyketide and nonribosomal peptide synthases. Curr Opin Chem Biol 1: 309315.
  • Zhang, Y. (2005) The magic bullets and tuberculosis drug targets. Annu Rev Pharmacol Toxicol 45: 529564.
  • Zhang, Y.M., and Rock, C.O. (2009) Transcriptional regulation in bacterial membrane lipid synthesis. J Lipid Res 50: S115S119.
  • Zhang, Y.M., White, S.W., and Rock, C.O. (2006) Inhibiting bacterial fatty acid synthesis. J Biol Chem 281: 1754117544.
  • Zhu, K., Zhang, Y.M., and Rock, C.O. (2009) Transcriptional regulation of membrane lipid homeostasis in Escherichia coli. J Biol Chem 284: 3488034888.
  • Zimhony, O., Vilcheze, C., and Jacobs, W.R., Jr (2004) Characterization of Mycobacterium smegmatis expressing the Mycobacterium tuberculosis fatty acid synthase I (fas1) gene. J Bacteriol 186: 40514055.