SEARCH

SEARCH BY CITATION

References

  • Allfrey, V.G., Faulkner, R., and Mirsky, A.E. (1964) Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci USA 51: 786794.
  • Artavanis-Tsakonas, K., Misaghi, S., Comeaux, C.A., Catic, A., Spooner, E., Duraisingh, M.T., and Ploegh, H.L. (2006) Identification by functional proteomics of a deubiquitinating/deNeddylating enzyme in Plasmodium falciparum. Mol Microbiol 61: 11871195.
  • Bahl, A., Brunk, B., Crabtree, J., Fraunholz, M.J., Gajria, B., Grant, G.R., et al. (2003) PlasmoDB: the Plasmodium genome resource. A database integrating experimental and computational data. Nucleic Acids Res 31: 212215.
  • Basu, A., Rose, K.L., Zhang, J., Beavis, R.C., Ueberheide, B., Garcia, B.A., et al. (2009) Proteome-wide prediction of acetylation substrates. Proc Natl Acad Sci USA 106: 1378513790.
  • Bracchi-Ricard, V., Moe, D., and Chakrabarti, D. (2005) Two Plasmodium falciparum ribonucleotide reductase small subunits, PfR2 and PfR4, interact with each other and are components of the in vivo enzyme complex. J Mol Biol 347: 749758.
  • Cassera, M.B., Zhang, Y., Hazleton, K.Z., and Schramm, V.L. (2011) Purine and pyrimidine pathways as targets in Plasmodium falciparum. Curr Top Med Chem 11: 21032115.
  • Choudhary, C., Kumar, C., Gnad, F., Nielsen, M.L., Rehman, M., Walther, T.C., et al. (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325: 834840.
  • Crooks, G.E., Hon, G., Chandonia, J.M., and Brenner, S.E. (2004) WebLogo: a sequence logo generator. Genome Res 14: 11881190.
  • Cui, L., Miao, J., Furuya, T., Li, X., Su, X.Z., and Cui, L. (2007) PfGCN5-mediated histone H3 acetylation plays a key role in gene expression in Plasmodium falciparum. Eukaryot Cell 6: 12191227.
  • Denuc, A., and Marfany, G. (2010) SUMO and ubiquitin paths converge. Biochem Soc Trans 38: 3439.
  • Edgar, R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 17921797.
  • Fan, Q., An, L., and Cui, L. (2004a) PfADA2, a Plasmodium falciparum homologue of the transcriptional coactivator ADA2 and its in vivo association with the histone acetyltransferase PfGCN5. Gene 336: 251261.
  • Fan, Q., An, L., and Cui, L. (2004b) Plasmodium falciparum histone acetyltransferase, a yeast GCN5 homologue involved in chromatin remodeling. Eukaryot Cell 3: 264276.
  • Finkemeier, I., Laxa, M., Miguet, L., Howden, A.J., and Sweetlove, L.J. (2011) Proteins of diverse function and subcellular location are lysine acetylated in Arabidopsis. Plant Physiol 155: 17791790.
  • Foth, B.J., Zhang, N., Chaal, B.K., Sze, S.K., Preiser, P.R., and Bozdech, Z. (2011) Quantitative time-course profiling of parasite and host cell proteins in the human malaria parasite Plasmodium falciparum. Mol Cell Proteomics 10: M110006411.
  • Henriksen, P., Wagner, S.A., Weinert, B.T., Sharma, S., Bacinskaja, G., Rehman, M., et al. (2012) Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae. Mol Cell Proteomics 11: 15101522.
  • Hoepfner, D., McNamara, C.W., Lim, C.S., Studer, C., Riedl, R., Aust, T., et al. (2012) Selective and specific inhibition of the plasmodium falciparum lysyl-tRNA synthetase by the fungal secondary metabolite cladosporin. Cell Host Microbe 11: 654663.
  • Horrocks, P., Wong, E., Russell, K., and Emes, R.D. (2009) Control of gene expression in Plasmodium falciparum – ten years on. Mol Biochem Parasitol 164: 925.
  • Istvan, E.S., Dharia, N.V., Bopp, S.E., Gluzman, I., Winzeler, E.A., and Goldberg, D.E. (2011) Validation of isoleucine utilization targets in Plasmodium falciparum. Proc Natl Acad Sci USA 108: 16271632.
  • Jeffers, V., and Sullivan, W.J., Jr (2012) Lysine acetylation is widespread on proteins of diverse function and localization in the protozoan parasite Toxoplasma gondii. Eukaryot Cell 11: 735742.
  • Khatri, P., and Draghici, S. (2005) Ontological analysis of gene expression data: current tools, limitations, and open problems. Bioinformatics 21: 35873595.
  • Kim, S.C., Sprung, R., Chen, Y., Xu, Y., Ball, H., Pei, J., et al. (2006) Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell 23: 607618.
  • de Koning-Ward, T.F., Gilson, P.R., Boddey, J.A., Rug, M., Smith, B.J., Papenfuss, A.T., et al. (2009) A newly discovered protein export machine in malaria parasites. Nature 459: 945949.
  • Le Roch, K.G., Zhou, Y., Blair, P.L., Grainger, M., Moch, J.K., Haynes, J.D., et al. (2003) Discovery of gene function by expression profiling of the malaria parasite life cycle. Science 301: 15031508.
  • Leiva, M., Moretti, S., Soilihi, H., Pallavicini, I., Peres, L., Mercurio, C., et al. (2012) Valproic acid induces differentiation and transient tumor regression, but spares leukemia-initiating activity in mouse models of APL. Leukemia 26: 16301637.
  • Li, T., Du, Y., Wang, L., Huang, L., Li, W., Lu, M., et al. (2012) Characterization and prediction of lysine (K)-acetyl-transferase specific acetylation sites. Mol Cell Proteomics 11: M111011080.
  • Lopez-Rubio, J.J., Gontijo, A.M., Nunes, M.C., Issar, N., Hernandez Rivas, R., and Scherf, A. (2007) 5′ flanking region of var genes nucleate histone modification patterns linked to phenotypic inheritance of virulence traits in malaria parasites. Mol Microbiol 66: 12961305.
  • Luah, Y.H., Chaal, B.K., Ong, E.Z., and Bozdech, Z. (2010) A moonlighting function of Plasmodium falciparum histone 3, mono-methylated at lysine 9? PLoS ONE 5: e10252.
  • Lundby, A., Lage, K., Weinert, B.T., Bekker-Jensen, D.B., Secher, A., Skovgaard, T., et al. (2012) Proteomic analysis of lysine acetylation sites in rat tissues reveals organ specificity and subcellular patterns. Cell Rep 2: 419431.
  • Mamoun, C.B., and Goldberg, D.E. (2001) Plasmodium protein phosphatase 2C dephosphorylates translation elongation factor 1beta and inhibits its PKC-mediated nucleotide exchange activity in vitro. Mol Microbiol 39: 973981.
  • Maurer-Stroh, S., Dickens, N.J., Hughes-Davies, L., Kouzarides, T., Eisenhaber, F., and Ponting, C.P. (2003) The Tudor domain ‘Royal Family’: Tudor, plant Agenet, Chromo, PWWP and MBT domains. Trends Biochem Sci 28: 6974.
  • Merrick, C.J., and Duraisingh, M.T. (2010) Epigenetics in Plasmodium: what do we really know? Eukaryot Cell 9: 11501158.
  • Miao, J., and Cui, L. (2011) Rapid isolation of single malaria parasite-infected red blood cells by cell sorting. Nat Protoc 6: 140146.
  • Miao, J., Fan, Q., Cui, L., and Li, J. (2006) The malaria parasite Plasmodium falciparum histones: organization, expression, and acetylation. Gene 369: 5365.
  • Miao, J., Fan, Q., Cui, L., Li, X., Wang, H., Ning, G., and Reese, J.C. (2010) The MYST family histone acetyltransferase regulates gene expression and cell cycle in malaria parasite Plasmodium falciparum. Mol Microbiol 78: 883902.
  • Olszewski, K.L., and Llinas, M. (2011) Central carbon metabolism of Plasmodium parasites. Mol Biochem Parasitol 175: 95103.
  • Patel, V., Mazitschek, R., Coleman, B., Nguyen, C., Urgaonkar, S., Cortese, J., et al. (2009) Identification and characterization of small molecule inhibitors of a class I histone deacetylase from Plasmodium falciparum. J Med Chem 52: 21852187.
  • Pessi, G., Kociubinski, G., and Mamoun, C.B. (2004) A pathway for phosphatidylcholine biosynthesis in Plasmodium falciparum involving phosphoethanolamine methylation. Proc Natl Acad Sci USA 101: 62066211.
  • Ponts, N., Yang, J., Chung, D.W., Prudhomme, J., Girke, T., Horrocks, P., and Le Roch, K.G. (2008) Deciphering the ubiquitin-mediated pathway in apicomplexan parasites: a potential strategy to interfere with parasite virulence. PLoS ONE 3: e2386.
  • Prusty, D., Mehra, P., Srivastava, S., Shivange, A.V., Gupta, A., Roy, N., and Dhar, S.K. (2008) Nicotinamide inhibits Plasmodium falciparum Sir2 activity in vitro and parasite growth. FEMS Microbiol Lett 282: 266272.
  • Ralph, S.A., van Dooren, G.G., Waller, R.F., Crawford, M.J., Fraunholz, M.J., Foth, B.J., et al. (2004) Tropical infectious diseases: metabolic maps and functions of the Plasmodium falciparum apicoplast. Nat Rev Microbiol 2: 203216.
  • Ramasamy, G., Gupta, D., Mohmmed, A., and Chauhan, V.S. (2007) Characterization and localization of Plasmodium falciparum homolog of prokaryotic ClpQ/HslV protease. Mol Biochem Parasitol 152: 139148.
  • Salcedo-Amaya, A.M., van Driel, M.A., Alako, B.T., Trelle, M.B., van den Elzen, A.M., Cohen, A.M., et al. (2009) Dynamic histone H3 epigenome marking during the intraerythrocytic cycle of Plasmodium falciparum. Proc Natl Acad Sci USA 106: 96559660.
  • Shahbazian, M.D., and Grunstein, M. (2007) Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem 76: 75100.
  • Soufi, B., Soares, N.C., Ravikumar, V., and Macek, B. (2012) Proteomics reveals evidence of cross-talk between protein modifications in bacteria: focus on acetylation and phosphorylation. Curr Opin Microbiol 15: 357363.
  • Sun, B., Guo, S., Tang, Q., Li, C., Zeng, R., Xiong, Z., et al. (2011) Regulation of the histone acetyltransferase activity of hMOF via autoacetylation of Lys274. Cell Res 21: 12621266.
  • Trager, W., and Jensen, J.B. (1976) Human malaria parasites in continuous culture. Science 193: 673675.
  • Treeck, M., Sanders, J.L., Elias, J.E., and Boothroyd, J.C. (2011) The phosphoproteomes of Plasmodium falciparum and Toxoplasma gondii reveal unusual adaptations within and beyond the parasites' boundaries. Cell Host Microbe 10: 410419.
  • Verdone, L., Caserta, M., and Di Mauro, E. (2005) Role of histone acetylation in the control of gene expression. Biochem Cell Biol 83: 344353.
  • Wang, Q., Zhang, Y., Yang, C., Xiong, H., Lin, Y., Yao, J., et al. (2010) Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science 327: 10041007.
  • Weinert, B.T., Wagner, S.A., Horn, H., Henriksen, P., Liu, W.R., Olsen, J.V., et al. (2011) Proteome-wide mapping of the Drosophila acetylome demonstrates a high degree of conservation of lysine acetylation. Sci Signal 4: ra48.
  • Wilson, T., Munro, D.S., and Richard, D.R. (1952) Proguanil-resistance in Malayan strains of Plasmodium vivax. Br Med J 1: 564568.
  • Wu, X., Oh, M.H., Schwarz, E.M., Larue, C.T., Sivaguru, M., Imai, B.S., et al. (2011) Lysine acetylation is a widespread protein modification for diverse proteins in Arabidopsis. Plant Physiol 155: 17691778.
  • Yang, X.J., and Seto, E. (2008) Lysine acetylation: codified crosstalk with other posttranslational modifications. Mol Cell 31: 449461.
  • Yu, B.J., Kim, J.A., Moon, J.H., Ryu, S.E., and Pan, J.G. (2008) The diversity of lysine-acetylated proteins in Escherichia coli. J Microbiol Biotechnol 18: 15291536.
  • Yuan, H., Rossetto, D., Mellert, H., Dang, W., Srinivasan, M., Johnson, J., et al. (2012) MYST protein acetyltransferase activity requires active site lysine autoacetylation. EMBO J 31: 5870.
  • Zhang, J., Sprung, R., Pei, J., Tan, X., Kim, S., Zhu, H., et al. (2009) Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli. Mol Cell Proteomics 8: 215225.
  • Zhao, S., Xu, W., Jiang, W., Yu, W., Lin, Y., Zhang, T., et al. (2010) Regulation of cellular metabolism by protein lysine acetylation. Science 327: 10001004.