SEARCH

SEARCH BY CITATION

References

  • Abdel-Muhsin, A.M., Mackinnon, M.J., Ali, E., Nassir, el-K.A., Suleiman, S., Ahmed, S., et al. (2004) Evolution of drug-resistance genes in Plasmodium falciparum in an area of seasonal malaria transmission in Eastern Sudan. J Infect Dis 189: 12391244.
  • Anderson, T.J., Nair, S., Qin, H., Singlam, S., Brockman, A., Paiphun, L., and Nosten, F. (2005) Are transporter genes other than the chloroquine resistance locus (pfcrt) and multidrug resistance gene (pfmdr) associated with antimalarial drug resistance? Antimicrob Agents Chemother 49: 21802188.
  • Andersson, D.I., and Hughes, D. (2010) Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol 8: 260271.
  • Andriantsoanirina, V., Menard, D., Rabearimanana, S., Hubert, V., Bouchier, C., Tichit, M., et al. (2010) Association of microsatellite variations of Plasmodium falciparum Na+/H+ exchanger (Pfnhe-1) gene with reduced in vitro susceptibility to quinine: lack of confirmation in clinical isolates from Africa. Am J Trop Med Hyg 82: 782787.
  • Asih, P.B., Rogers, W.O., Susanti, A.I., Rahmat, A., Rozi, I.E., Kusumaningtyas, M.A., et al (2009) Seasonal distribution of anti-malarial drug resistance alleles on the island of Sumba, Indonesia. Malar J 8: 222.
  • Babiker, H.A., Gadalla, A.A., and Ranford-Cartwright, L.C. (2013) The role of asymptomatic P. falciparum parasitaemia in the evolution of antimalarial drug resistance in areas of seasonal transmission. Drug Resist Updat 16: 19. doi:10.1016/j.drup.2013.02.001
  • Baliraine, F.N., and Rosenthal, P.J. (2011) Prolonged selection of pfmdr1 polymorphisms after treatment of falciparum malaria with artemether-lumefantrine in Uganda. J Infect Dis 204: 11201124.
  • Baliraine, F.N., Nsobya, S.L., Achan, J., Tibenderana, J.K., Talisuna, A.O., Greenhouse, B., and Rosenthal, P.J. (2011) Limited ability of Plasmodium falciparum pfcrt, pfmdr1, and pfnhe1 polymorphisms to predict quinine in vitro sensitivity or clinical effectiveness in Uganda. Antimicrob Agents Chemother 55: 615622.
  • Borges-Walmsley, M.I., McKeegan, K.S., and Walmsley, A.R. (2003) Structure and function of efflux pumps that confer resistance to drugs. Biochem J 376: 313338.
  • Briolant, S., Baragatti, M., Parola, P., Simon, F., Tall, A., Sokhna, C., et al. (2009) Multinormal in vitro distribution model suitable for the distribution of Plasmodium falciparum chemosusceptibility to doxycycline. Antimicrob Agents Chemother 53: 688695.
  • Briolant, S., Wurtz, N., Zettor, A., Rogier, C., and Pradines, B. (2010) Susceptibility of Plasmodium falciparum isolates to doxycycline is associated with pftetQ sequence polymorphisms and pftetQ and pfmdt copy numbers. J Infect Dis 201: 153159.
  • Cheeseman, I.H., Miller, B.A., Nair, S., Nkhoma, S., Tan, A., Tan, J.C., et al. (2012) A major genome region underlying artemisinin resistance in malaria. Science 336: 7982.
  • Cowman, A.F., Karcz, S., Galatis, D., and Culvenor, J.G. (1991) A P-glycoprotein homologue of Plasmodium falciparum is localized on the digestive vacuole. J Cell Biol 113: 10331042.
  • Cui, L., Wang, Z., Jiang, H., Parker, D., Wang, H., Su, X.Z., and Cui, L. (2012) Lack of association of the S769N mutation in Plasmodium falciparum SERCA (PfATP6) with resistance to artemisinins. Antimicrob Agents Chemother 56: 25462552.
  • Dahl, E.L., and Rosenthal, P.J. (2008) Apicoplast translation, transcription and genome replication: targets for antimalarial antibiotics. Trends Parasitol 24: 279284.
  • Dahlstrom, S., Veiga, M.I., Ferreira, P., Martensson, A., Kaneko, A., Andersson, B., et al. (2008) Diversity of the sarco/endoplasmic reticulum Ca(2+)-ATPase orthologue of Plasmodium falciparum (PfATP6). Infect Genet Evol 8: 340345.
  • Dahlstrom, S., Ferreira, P.E., Veiga, M.I., Sedighi, N., Wiklund, L., Martensson, A., et al. (2009a) Plasmodium falciparum multidrug resistance protein 1 and artemisinin-based combination therapy in Africa. J Infect Dis 200: 14561464.
  • Dahlstrom, S., Veiga, M.I., Martensson, A., Bjorkman, A., and Gil, J.P. (2009b) Polymorphism in PfMRP1 (Plasmodium falciparum multidrug resistance protein 1) amino acid 1466 associated with resistance to sulfadoxine-pyrimethamine treatment. Antimicrob Agents Chemother 53: 25532556.
  • Davis, T.M., Hung, T.Y., Sim, I.K., Karunajeewa, H.A., and Ilett, K.F. (2005) Piperaquine: a resurgent antimalarial drug. Drugs 65: 7587.
  • Dharia, N.V., Plouffe, D., Bopp, S.E., Gonzalez-Paez, G.E., Lucas, C., Salas, C., et al. (2010) Genome scanning of Amazonian Plasmodium falciparum shows subtelomeric instability and clindamycin-resistant parasites. Genome Res 20: 15341544.
  • Dondorp, A., Nosten, F., Stepniewska, K., Day, N., and White, N. (2005) Artesunate versus quinine for treatment of severe falciparum malaria: a randomised trial. Lancet 366: 717725.
  • Dondorp, A.M., Nosten, F., Yi, P., Das, D., Phyo, A.P., Tarning, J., et al. (2009) Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 361: 455467.
  • Dondorp, A.M., Fanello, C.I., Hendriksen, I.C., Gomes, E., Seni, A., Chhaganlal, K.D., et al. (2010) Artesunate versus quinine in the treatment of severe falciparum malaria in African children (AQUAMAT): an open-label, randomised trial. Lancet 376: 16471657.
  • Dorsey, G., Staedke, S., Clark, T.D., Njama-Meya, D., Nzarubara, B., Maiteki-Sebuguzi, C., et al. (2007) Combination therapy for uncomplicated falciparum malaria in Ugandan children: a randomized trial. JAMA 297: 22102219.
  • Duraisingh, M.T., Jones, P., Sambou, I., von Seidlein, L., Pinder, M., and Warhurst, D.C. (2000a) The tyrosine-86 allele of the pfmdr1 gene of Plasmodium falciparum is associated with increased sensitivity to the anti-malarials mefloquine and artemisinin. Mol Biochem Parasitol 108: 1323.
  • Duraisingh, M.T., Roper, C., Walliker, D., and Warhurst, D.C. (2000b) Increased sensitivity to the antimalarials mefloquine and artemisinin is conferred by mutations in the pfmdr1 gene of Plasmodium falciparum. Mol Microbiol 36: 955961.
  • Ecker, A., Lakshmanan, V., Sinnis, P., Coppens, I., and Fidock, D.A. (2011) Evidence that mutant PfCRT facilitates the transmission to mosquitoes of chloroquine-treated Plasmodium gametocytes. J Infect Dis 203: 228236.
  • Ecker, A., Lehane, A.M., Clain, J., and Fidock, D.A. (2012) PfCRT and its role in antimalarial drug resistance. Trends Parasitol 28: 504514.
  • Eckstein-Ludwig, U., Webb, R.J., Van Goethem, I.D., East, J.M., Lee, A.G., Kimura, M., et al. (2003) Artemisinins target the SERCA of Plasmodium falciparum. Nature 424: 957961.
  • Ekland, E.H., and Fidock, D.A. (2007) Advances in understanding the genetic basis of antimalarial drug resistance. Curr Opin Microbiol 10: 363370.
  • Feachem, R.G., Phillips, A.A., Hwang, J., Cotter, C., Wielgosz, B., Greenwood, B.M., et al. (2010) Shrinking the malaria map: progress and prospects. Lancet 376: 15661578.
  • Ferdig, M.T., Cooper, R.A., Mu, J., Deng, B., Joy, D.A., Su, X.Z., and Wellems, T.E. (2004) Dissecting the loci of low-level quinine resistance in malaria parasites. Mol Microbiol 52: 985997.
  • Fidock, D.A., Nomura, T., Talley, A.K., Cooper, R.A., Dzekunov, S.M., Ferdig, M.T., et al. (2000) Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Mol Cell 6: 861871.
  • Fisher, N., Abd Majid, R., Antoine, T., Al-Helal, M., Warman, A.J., Johnson, D.J., et al. (2012) Cytochrome b mutation Y268S conferring atovaquone resistance phenotype in malaria parasite results in reduced parasite bc1 catalytic turnover and protein expression. J Biol Chem 287: 97319741.
  • Foote, S.J., Kyle, D.E., Martin, R.K., Oduola, A.M., Forsyth, K., Kemp, D.J., and Cowman, A.F. (1990) Several alleles of the multidrug-resistance gene are closely linked to chloroquine resistance in Plasmodium falciparum. Nature 345: 255258.
  • Four Artemisinin-Based Combinations Study Group (2011) A head-to-head comparison of four artemisinin-based combinations for treating uncomplicated malaria in African children: a randomized trial. PLoS Med 8: e1001119.
  • Gordo, I., Perfeito, L., and Sousa, A. (2012) Fitness effects of mutations in bacteria. J Mol Microbiol Biotechnol 21: 2035.
  • Gosling, R.D., Okell, L., Mosha, J., and Chandramohan, D. (2011) The role of antimalarial treatment in the elimination of malaria. Clin Microbiol Infect 17: 16171623.
  • Götte, M. (2012) The distinct contributions of fitness and genetic barrier to the development of antiviral drug resistance. Curr Opin Virol 2: 644650.
  • Greenwood, B. (2010) Anti-malarial drugs and the prevention of malaria in the population of malaria endemic areas. Malar J 9 (Suppl. 3): S2.
  • Gregson, A., and Plowe, C.V. (2005) Mechanisms of resistance of malaria parasites to antifolates. Pharmacol Rev 57: 117145.
  • Hallett, R.L., Sutherland, C.J., Alexander, N., Ord, R., Jawara, M., Drakeley, C.J., et al. (2004) Combination therapy counteracts the enhanced transmission of drug-resistant malaria parasites to mosquitoes. Antimicrob Agents Chemother 48: 39403943.
  • Happi, C.T., Gbotosho, G.O., Folarin, O.A., Sowunmi, A., Hudson, T., O'Neil, M., et al. (2009) Selection of Plasmodium falciparum multidrug resistance gene 1 alleles in asexual stages and gametocytes by artemether-lumefantrine in Nigerian children with uncomplicated falciparum malaria. Antimicrob Agents Chemother 53: 888895.
  • Hayward, R., Saliba, K.J., and Kirk, K. (2005) pfmdr1 mutations associated with chloroquine resistance incur a fitness cost in Plasmodium falciparum. Mol Microbiol 55: 12851295.
  • Heinberg, A., Siu, E., Stern, C., Lawrence, E.A., Ferdig, M.T., Deitsch, K.W., and Kirkman, L.A. (2013) Direct evidence for the adaptive role of copy number variation on antifolate susceptibility in Plasmodium falciparum. Mol Microbiol 88: 702712.
  • Henry, M., Briolant, S., Zettor, A., Pelleau, S., Baragatti, M., Baret, E., et al. (2009) Plasmodium falciparum Na+/H+ exchanger 1 transporter is involved in reduced susceptibility to quinine. Antimicrob Agents Chemother 53: 19261930.
  • Humphreys, G.S., Merinopoulos, I., Ahmed, J., Whitty, C.J., Mutabingwa, T.K., Sutherland, C.J., and Hallett, R.L. (2007) Amodiaquine and artemether-lumefantrine select distinct alleles of the Plasmodium falciparum mdr1 gene in Tanzanian children treated for uncomplicated malaria. Antimicrob Agents Chemother 51: 991997.
  • Jambou, R., Legrand, E., Niang, M., Khim, N., Lim, P., Volney, B., et al. (2005) Resistance of Plasmodium falciparum field isolates to in-vitro artemether and point mutations of the SERCA-type PfATPase6. Lancet 366: 19601963.
  • Kavishe, R.A., van den Heuvel, J.M., van de Vegte-Bolmer, M., Luty, A.J., Russel, F.G., and Koenderink, J.B. (2009) Localization of the ATP-binding cassette (ABC) transport proteins PfMRP1, PfMRP2, and PfMDR5 at the Plasmodium falciparum plasma membrane. Malar J 8: 205.
  • Klonis, N., Crespo-Ortiz, M., Bottova, I., Abu-Bakar, N., Kenny, S., Rosenthal, P.J., and Tilley, L. (2011) Artemisinin activity against Plasmodium falciparum requires hemoglobin uptake and digestion. Proc Natl Acad Sci USA 108: 1140511410.
  • Klonis, N., Xie, S.C., McCaw, J.M., Crespo-Ortiz, M., Zaloumis, S.G., Simpson, J.A., and Tilley, L. (2013) Altered temporal response of malaria parasites determines differential sensitivity to artemisinin. Proc Natl Acad Sci USA 110: 51575162.
  • Koenderink, J.B., Kavishe, R.A., Rijpma, S.R., and Russel, F.G. (2010) The ABCs of multidrug resistance in malaria. Trends Parasitol 26: 440446.
  • Korsinczky, M., Chen, N., Kotecka, B., Saul, A., Rieckmann, K., and Cheng, Q. (2000) Mutations in Plasmodium falciparum cytochrome b that are associated with atovaquone resistance are located at a putative drug-binding site. Antimicrob Agents Chemother 44: 21002108.
  • Kublin, J.G., Cortese, J.F., Njunju, E.M., Mukadam, R.A., Wirima, J.J., Kazembe, P.N., et al. (2003) Reemergence of chloroquine-sensitive Plasmodium falciparum malaria after cessation of chloroquine use in Malawi. J Infect Dis 187: 18701875.
  • Lakshmanan, V., Bray, P.G., Verdier-Pinard, D., Johnson, D.J., Horrocks, P., Muhle, R.A., et al. (2005) A critical role for PfCRT K76T in Plasmodium falciparum verapamil-reversible chloroquine resistance. EMBO J 24: 22942305.
  • Laufer, M.K., Thesing, P.C., Eddington, N.D., Masonga, R., Dzinjalamala, F.K., Takala, S.L., et al. (2006) Return of chloroquine antimalarial efficacy in Malawi. N Engl J Med 355: 19591966.
  • Lim, P., Wongsrichanalai, C., Chim, P., Khim, N., Kim, S., Chy, S., et al. (2010) Decreased in vitro susceptibility of Plasmodium falciparum isolates to artesunate, mefloquine, chloroquine, and quinine in Cambodia from 2001 to 2007. Antimicrob Agents Chemother 54: 21352142.
  • Mackinnon, M.J., Gaffney, D.J., and Read, A.F. (2002) Virulence in rodent malaria: host genotype by parasite genotype interactions. Infect Genet Evol 1: 287296.
  • Martin, R.E., and Kirk, K. (2004) The malaria parasite's chloroquine resistance transporter is a member of the drug/metabolite transporter superfamily. Mol Biol Evol 21: 19381949.
  • Meng, H., Zhang, R., Yang, H., Fan, Q., Su, X., Miao, J., et al. (2010) In vitro sensitivity of Plasmodium falciparum clinical isolates from the China-Myanmar border area to quinine and association with polymorphism in the Na+/H+ exchanger. Antimicrob Agents Chemother 54: 43064313.
  • Meshnick, S.R., and Dobson, M.J. (2001) The history of antimalarial drugs. In Antimalarial Chemotherapy: Mechanisms of Action, Resistance, and New Directions in Drug Discovery. Rosenthal, P.J. (ed.). Totowa, NJ: Humana Press, pp. 1525.
  • Mharakurwa, S., Kumwenda, T., Mkulama, M.A., Musapa, M., Chishimba, S., Shiff, C.J., et al. (2011) Malaria antifolate resistance with contrasting Plasmodium falciparum dihydrofolate reductase (DHFR) polymorphisms in humans and Anopheles mosquitoes. Proc Natl Acad Sci USA 108: 1879618801.
  • Miotto, O., Almagro-Garcia, J., Manske, M., Macinnis, B., Campino, S., Rockett, K.A., et al. (2013) Multiple populations of artemisinin-resistant Plasmodium falciparum in Cambodia. Nat Genet 45: 648655.
  • Mita, T., and Tanabe, K. (2012) Evolution of Plasmodium falciparum drug resistance: implications for the development and containment of artemisinin resistance. Jpn J Infect Dis 65: 465475.
  • Mu, J., Ferdig, M.T., Feng, X., Joy, D.A., Duan, J., Furuya, T., et al. (2003) Multiple transporters associated with malaria parasite responses to chloroquine and quinine. Mol Microbiol 49: 977989.
  • Murray, C.J., Rosenfeld, L.C., Lim, S.S., Andrews, K.G., Foreman, K.J., Haring, D., et al. (2012) Global malaria mortality between 1980 and 2010: a systematic analysis. Lancet 379: 413431.
  • Musset, L., Bras, J.L., and Clain, J. (2007) Parallel evolution of adaptive mutations in Plasmodium falciparum mitochondrial DNA during atovaquone-proguanil treatment. Mol Biol Evol 24: 15821585.
  • Mwai, L., Kiara, S.M., Abdirahman, A., Pole, L., Rippert, A., Diriye, A., et al. (2009) In vitro activity of piperaquine, lumefantrine and dihydroartemisinin in Kenyan Plasmodium falciparum isolates and polymorphisms in Pfcrt and Pfmdr1. Antimicrob Agents Chemother 53: 50695073.
  • Nair, S., Miller, B., Barends, M., Jaidee, A., Patel, J., Mayxay, M., et al. (2008) Adaptive copy number evolution in malaria parasites. PLoS Genet 4: e1000243.
  • Nawaz, F., Nsobya, S.L., Kiggundu, M., Joloba, M., and Rosenthal, P.J. (2009) Selection of parasites with diminished drug susceptibility by amodiaquine-containing antimalarial regimens in Uganda. J Infect Dis 200: 16501657.
  • Nkrumah, L.J., Riegelhaupt, P.M., Moura, P., Johnson, D.J., Patel, J., Hayton, K., et al. (2009) Probing the multifactorial basis of Plasmodium falciparum quinine resistance: evidence for a strain-specific contribution of the sodium-proton exchanger PfNHE. Mol Biochem Parasitol 165: 122131.
  • Noedl, H., Se, Y., Schaecher, K., Smith, B.L., Socheat, D., and Fukuda, M.M. (2008) Evidence of artemisinin-resistant malaria in western Cambodia. N Engl J Med 359: 26192620.
  • Nosten, F., and White, N.J. (2007) Artemisinin-based combination treatment of falciparum malaria. Am J Trop Med Hyg 77: 181192.
  • Nsobya, S.L., Dokomajilar, C., Joloba, M., Dorsey, G., and Rosenthal, P.J. (2007) Resistance-mediating Plasmodium falciparum pfcrt and pfmdr1 alleles after treatment with artesunate-amodiaquine in Uganda. Antimicrob Agents Chemother 51: 30233025.
  • Ochong, E., Tumwebaze, P.K., Byaruhanga, O., Greenhouse, B., and Rosenthal, P.J. (2013) Fitness consequences of Plasmodium falciparum pfmdr1 polymorphisms inferred from ex vivo culture of Ugandan parasites. Antimicrob Agents Chemother [Epub ahead of print].
  • Okombo, J., Kiara, S.M., Rono, J., Mwai, L., Pole, L., Ohuma, E., et al. (2010) In vitro activities of quinine and other antimalarials and pfnhe polymorphisms in Plasmodium isolates from Kenya. Antimicrob Agents Chemother 54: 33023307.
  • Okumu, F.O., and Moore, S.J. (2011) Combining indoor residual spraying and insecticide-treated nets for malaria control in Africa: a review of possible outcomes and an outline of suggestions for the future. Malar J 10: 208.
  • Olotu, A., Fegan, G., Wambua, J., Nyangweso, G., Awuondo, K.O., Leach, A., et al. (2013) Four-year efficacy of RTS,S/AS01E and its interaction with malaria exposure. N Engl J Med 368: 11111120.
  • Ord, R., Alexander, N., Dunyo, S., Hallett, R., Jawara, M., Targett, G., et al. (2007) Seasonal carriage of pfcrt and pfmdr1 alleles in Gambian Plasmodium falciparum imply reduced fitness of chloroquine-resistant parasites. J Infect Dis 196: 16131619.
  • Osman, M.E., Mockenhaupt, F., Bienzle, U., Elbashir, M.I., and Giha, H.A. (2007) Field-based evidence for linkage of mutations associated with chloroquine (pfcrt/pfmdr1) and sulfadoxine-pyrimethamine (pfdhfr/pfdhps) resistance and for the fitness cost of multiple mutations in P. falciparum. Infect Genet Evol 7: 5259.
  • Pearce, R.J., Pota, H., Evehe, M.S., Ba, E.-H., Mombo-Ngoma, G., Malisa, A.L., et al. (2009) Multiple origins and regional dispersal of resistant dhps in African Plasmodium falciparum malaria. PLoS Med 6: e1000055.
  • Peters, J.M., Chen, N., Gatton, M., Korsinczky, M., Fowler, E.V., Manzetti, S., et al. (2002) Mutations in cytochrome b resulting in atovaquone resistance are associated with loss of fitness in Plasmodium falciparum. Antimicrob Agents Chemother 46: 24352441.
  • Phompradit, P., Wisedpanichkij, R., Muhamad, P., Chaijaroenkul, W., and Na-Bangchang, K. (2011) Molecular analysis of pfatp6 and pfmdr1 polymorphisms and their association with in vitro sensitivity in Plasmodium falciparum isolates from the Thai–Myanmar border. Acta Trop 120: 130135.
  • Pickard, A.L., Wongsrichanalai, C., Purfield, A., Kamwendo, D., Emery, K., Zalewski, C., et al. (2003) Resistance to antimalarials in Southeast Asia and genetic polymorphisms in pfmdr1. Antimicrob Agents Chemother 47: 24182423.
  • Picot, S., Olliaro, P., de Monbrison, F., Bienvenu, A.L., Price, R.N., and Ringwald, P. (2009) A systematic review and meta-analysis of evidence for correlation between molecular markers of parasite resistance and treatment outcome in falciparum malaria. Malar J 8: 89.
  • Preechapornkul, P., Imwong, M., Chotivanich, K., Pongtavornpinyo, W., Dondorp, A.M., Day, N., et al. (2009) Plasmodium falciparum pfmdr1 amplification, mefloquine resistance, and parasite fitness. Antimicrob Agents Chemother 53: 15091515.
  • Pulcini, S., Staines, H.M., Pittman, J.K., Slavic, K., Doerig, C., Halbert, J., et al. (2013) Expression in yeast links field polymorphisms in PfATP6 to in vitro artemisinin resistance and identifies new inhibitor classes. J Infect Dis doi:10.1093/infdis/jit171
  • Raj, D.K., Mu, J., Jiang, H., Kabat, J., Singh, S., Sullivan, M., et al. (2009) Disruption of a Plasmodium falciparum multidrug resistance-associated protein (PfMRP) alters its fitness and transport of antimalarial drugs and glutathione. J Biol Chem 284: 76877696.
  • Reed, M.B., Saliba, K.J., Caruana, S.R., Kirk, K., and Cowman, A.F. (2000) Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum. Nature 403: 906909.
  • Rodrigues, L., Henriques, G., and Cravo, P. (2013) MDR1-associated resistance to artesunate+mefloquine does not impair blood-stage parasite fitness in a rodent malaria model. Infect Genet Evol 14: 340346.
  • Rosario, V.E., Hall, R., Walliker, D., and Beale, G.H. (1978) Persistence of drug-resistant malaria parasites. Lancet 1: 185187.
  • Rottmann, M., McNamara, C., Yeung, B.K., Lee, M.C., Zou, B., Russell, B., et al. (2010) Spiroindolones, a potent compound class for the treatment of malaria. Science 329: 11751180.
  • Sanchez, C.P., Dave, A., Stein, W.D., and Lanzer, M. (2010) Transporters as mediators of drug resistance in Plasmodium falciparum. Int J Parasitol 40: 11091118.
  • Schlagenhauf, P., and Petersen, E. (2008) Malaria chemoprophylaxis: strategies for risk groups. Clin Microbiol Rev 21: 466472.
  • Schneider, P., Chan, B.H., Reece, S.E., and Read, A.F. (2008) Does the drug sensitivity of malaria parasites depend on their virulence? Malar J 7: 257.
  • Schneider, P., Bell, A.S., Sim, D.G., O'Donnell, A.J., Blanford, S., Paaijmans, K., et al. (2012) Virulence, drug sensitivity and transmission success in the rodent malaria, Plasmodium chabaudi. Proc Biol Sci 279: 46774685.
  • Sharom, F.J. (2011) The P-glycoprotein multidrug transporter. Essays Biochem 50: 161178.
  • Shinondo, C.J., Lanners, H.N., Lowrie, R.C., Jr, and Wiser, M.F. (1994) Effect of pyrimethamine resistance on sporogony in a Plasmodium berghei/Anopheles stephensi model. Exp Parasitol 78: 194202.
  • Sidhu, A.B., Verdier-Pinard, D., and Fidock, D.A. (2002) Chloroquine resistance in Plasmodium falciparum malaria parasites conferred by pfcrt mutations. Science 298: 210213.
  • Sidhu, A.B., Valderramos, S.G., and Fidock, D.A. (2005) pfmdr1 mutations contribute to quinine resistance and enhance mefloquine and artemisinin sensitivity in Plasmodium falciparum. Mol Microbiol 57: 913926.
  • Sidhu, A.B., Uhlemann, A.C., Valderramos, S.G., Valderramos, J.C., Krishna, S., and Fidock, D.A. (2006) Decreasing pfmdr1 copy number in Plasmodium falciparum malaria heightens susceptibility to mefloquine, lumefantrine, halofantrine, quinine, and artemisinin. J Infect Dis 194: 528535.
  • Sidhu, A.B., Sun, Q., Nkrumah, L.J., Dunne, M.W., Sacchettini, J.C., and Fidock, D.A. (2007) In vitro efficacy, resistance selection, and structural modeling studies implicate the malarial parasite apicoplast as the target of azithromycin. J Biol Chem 282: 24942504.
  • Sinou, V., Quang le, H., Pelleau, S., Huong, V.N., Huong, N.T., Tai le, M., et al (2011) Polymorphism of Plasmodium falciparum Na(+)/H(+) exchanger is indicative of a low in vitro quinine susceptibility in isolates from Viet Nam. Malar J 10: 164.
  • Sisowath, C., Stromberg, J., Martensson, A., Msellem, M., Obondo, C., Bjorkman, A., and Gil, J.P. (2005) In vivo selection of Plasmodium falciparum pfmdr1 86N coding alleles by artemether-lumefantrine (Coartem). J Infect Dis 191: 10141017.
  • Snow, R.W., Guerra, C.A., Noor, A.M., Myint, H.Y., and Hay, S.I. (2005) The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434: 214217.
  • Some, A.F., Sere, Y.Y., Dokomajilar, C., Zongo, I., Rouamba, N., Greenhouse, B., et al. (2010) Selection of known Plasmodium falciparum resistance-mediating polymorphisms by artemether-lumefantrine and amodiaquine-sulfadoxine-pyrimethamine but not dihydroartemisinin-piperaquine in Burkina Faso. Antimicrob Agents Chemother 54: 19491954.
  • Spillman, N.J., Allen, R.J., McNamara, C.W., Yeung, B.K., Winzeler, E.A., Diagana, T.T., and Kirk, K. (2013) Na(+) regulation in the malaria parasite Plasmodium falciparum involves the cation ATPase PfATP4 and is a target of the spiroindolone antimalarials. Cell Host Microbe 13: 227237.
  • Takala-Harrison, S., Clark, T.G., Jacob, C.G., Cummings, M., Miotto, O., Dondorp, A.M., et al. (2013) Genetic loci associated with delayed clearance of Plasmodium falciparum following artemisinin treatment in Southeast Asia. Proc Natl Acad Sci USA 110: 240245.
  • Tanabe, K., Zakeri, S., Palacpac, N.M., Afsharpad, M., Randrianarivelojosia, M., Kaneko, A., et al. (2011) Spontaneous mutations in the Plasmodium falciparum sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (PfATP6) gene among geographically widespread parasite populations unexposed to artemisinin-based combination therapies. Antimicrob Agents Chemother 55: 94100.
  • Tatem, A.J., Smith, D.L., Gething, P.W., Kabaria, C.W., Snow, R.W., and Hay, S.I. (2010) Ranking of elimination feasibility between malaria-endemic countries. Lancet 376: 15791591.
  • Tran, C.V., and Saier, M.H. (2004) The principal chloroquine resistance protein of Plasmodium falciparum is a member of the drug/metabolite transporter superfamily. Microbiology 150: 13.
  • Tucker, M.S., Mutka, T., Sparks, K., Patel, J., and Kyle, D.E. (2012) Phenotypic and genotypic analysis of in vitro-selected artemisinin-resistant progeny of Plasmodium falciparum. Antimicrob Agents Chemother 56: 302314.
  • Uhlemann, A.C., Cameron, A., Eckstein-Ludwig, U., Fischbarg, J., Iserovich, P., Zuniga, F.A., et al. (2005) A single amino acid residue can determine the sensitivity of SERCAs to artemisinins. Nat Struct Mol Biol 12: 628629.
  • Vaidya, A.B., and Mather, M.W. (2000) Atovaquone resistance in malaria parasites. Drug Resist Updat 3: 283287.
  • Valderramos, S.G., and Fidock, D.A. (2006) Transporters involved in resistance to antimalarial drugs. Trends Pharmacol Sci 27: 594601.
  • Valderramos, S.G., Scanfeld, D., Uhlemann, A.C., Fidock, D.A., and Krishna, S. (2010) Investigations into the role of the Plasmodium falciparum SERCA (PfATP6) L263E mutation in artemisinin action and resistance. Antimicrob Agents Chemother 54: 38423852.
  • Veiga, M.I., Ferreira, P.E., Jornhagen, L., Malmberg, M., Kone, A., Schmidt, B.A., et al. (2011) Novel polymorphisms in Plasmodium falciparum ABC transporter genes are associated with major ACT antimalarial drug resistance. PLoS ONE 6: e20212.
  • Walliker, D., Hunt, P., and Babiker, H. (2005) Fitness of drug-resistant malaria parasites. Acta Trop 94: 251259.
  • Wang, X., Mu, J., Li, G., Chen, P., Guo, X., Fu, L., et al. (2005) Decreased prevalence of the Plasmodium falciparum chloroquine resistance transporter 76T marker associated with cessation of chloroquine use against P. falciparum malaria in Hainan, People's Republic of China. Am J Trop Med Hyg 72: 410414.
  • Wargo, A.R., and Kurath, G. (2012) Viral fitness: definitions, measurement, and current insights. Curr Opin Virol 2: 538545.
  • Witkowski, B., Lelievre, J., Barragan, M.J., Laurent, V., Su, X.Z., Berry, A., and Benoit-Vical, F. (2010) Increased tolerance to artemisinin in Plasmodium falciparum is mediated by a quiescence mechanism. Antimicrob Agents Chemother 54: 18721877.
  • Witkowski, B., Khim, N., Chim, P., Kim, S., Ke, S., Kloeung, N., et al. (2013) Reduced artemisinin susceptibility of Plasmodium falciparum ring stages in western Cambodia. Antimicrob Agents Chemother 57: 914923.
  • World Health Organization (2010) Guidelines for the Treatment of Malaria. Geneva: World Health Organization.
  • Zhong, D., Afrane, Y., Githeko, A., Cui, L., Menge, D.M., and Yan, G. (2008) Molecular epidemiology of drug-resistant malaria in western Kenya highlands. BMC Infect Dis 8: 105.
  • Zongo, I., Dorsey, G., Rouamba, N., Tinto, H., Dokomajilar, C., Guiguemde, R.T., et al. (2007) Artemether-lumefantrine versus amodiaquine plus sulfadoxine-pyrimethamine for uncomplicated falciparum malaria in Burkina Faso: a randomised non-inferiority trial. Lancet 369: 491498.