SEARCH

SEARCH BY CITATION

References

  • Akoka, S., Barantin, L., and Trierweiler, M. (1999) Concentration measurement by proton NMR using the ERETIC method. Anal Chem 71: 25542557.
  • Alban, A., David, S.O., Bjorkesten, L., Andersson, C., Sloge, E., Lewis, S., and Currie, I. (2003) A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics 3: 3644.
  • Balogun, R.A. (1974) Studies on the amino acids of the tsetse fly, Glossina morsitans, maintained on in vitro and in vivo feeding systems. Comp Biochem Physiol A Comp Physiol 49: 215222.
  • Balogun, R.A., Hanimann, F., and Chen, P.S. (1969) Separation of free amino acids and derivatives in the tsetse fly Glossina palpalis (diptera) by ion-exchange chromatography. Experientia 25: 9395.
  • Barrett, M.P., Burchmore, R.J., Stich, A., Lazzari, J.O., Frasch, A.C., Cazzulo, J.J., and Krishna, S. (2003) The trypanosomiases. Lancet 362: 14691480.
  • Berriman, M., Ghedin, E., Hertz-Fowler, C., Blandin, G., Renauld, H., Bartholomeu, D.C., et al. (2005) The genome of the African trypanosome Trypanosoma brucei. Science 309: 416422.
  • Bridges, D.J., Pitt, A.R., Hanrahan, O., Brennan, K., Voorheis, H.P., Herzyk, P., et al. (2008) Characterisation of the plasma membrane subproteome of bloodstream form Trypanosoma brucei. Proteomics 8: 8399.
  • Bringaud, F., Peyruchaud, S., Baltz, D., Giroud, C., Simpson, L., and Baltz, T. (1995) Molecular characterization of the mitochondrial heat shock protein 60 gene from Trypanosoma brucei. Mol Biochem Parasitol 74: 119123.
  • Bringaud, F., Baltz, D., and Baltz, T. (1998) Functional and molecular characterization of a glycosomal PPi-dependent enzyme in trypanosomatids: pyruvate, phosphate dikinase. Proc Natl Acad Sci USA 95: 79637968.
  • Bringaud, F., Robinson, D.R., Barradeau, S., Biteau, N., Baltz, D., and Baltz, T. (2000) Characterization and disruption of a new Trypanosoma brucei repetitive flagellum protein, using double-stranded RNA inhibition. Mol Biochem Parasitol 111: 283297.
  • Bringaud, F., Riviere, L., and Coustou, V. (2006) Energy metabolism of trypanosomatids: adaptation to available carbon sources. Mol Biochem Parasitol 149: 19.
  • Bringaud, F., Ebikeme, C.E., and Boshart, M. (2010) Acetate and succinate production in amoebae, helminths, diplomonads, trichomonads and trypanosomatids: common and diverse metabolic strategies used by parasitic lower eukaryotes. Parasitology 137: 13151331.
  • Bringaud, F., Barrett, M.P., and Zilberstein, D. (2012) Multiple roles of proline transport and metabolism in trypanosomatids. Front Biosci 17: 349374.
  • Brun, R., and Schonenberger, M. (1979) Cultivation and in vitro cloning or procyclic culture forms of Trypanosoma brucei in a semi-defined medium. Acta Trop 36: 289292.
  • Carrero-Lerida, J., Perez-Moreno, G., Castillo-Acosta, V.M., Ruiz-Perez, L.M., and Gonzalez-Pacanowska, D. (2009) Intracellular location of the early steps of the isoprenoid biosynthetic pathway in the trypanosomatids Leishmania major and Trypanosoma brucei. Int J Parasitol 39: 307314.
  • Carter, N.S., and Fairlamb, A.H. (1993) Arsenical-resistant trypanosomes lack an unusual adenosine transporter. Nature 361: 173176.
  • Colasante, C., Ellis, M., Ruppert, T., and Voncken, F. (2006) Comparative proteomics of glycosomes from bloodstream form and procyclic culture form Trypanosoma brucei brucei. Proteomics 6: 32753293.
  • Colasante, C., Voncken, F., Manful, T., Ruppert, T., Tielens, A.G., Van Hellemond, J.J., and Clayton, C. (2013) Proteins and lipids of glycosomal membranes from Leishmania tarentolae and Trypanosoma brucei. F1000 Research 2: 27.
  • Coustou, V., Biran, M., Breton, M., Guegan, F., Riviere, L., Plazolles, N., et al. (2008) Glucosed-induced remodelling of intermediary and energy metabolism in procyclic Trypanosoma brucei. J Biol Chem 283: 1634216354.
  • Cross, G.A., Klein, R.A., and Linstead, D.J. (1975) Utilization of amino acids by Trypanosoma brucei in culture: L-threonine as a precursor for acetate. Parasitology 71: 311326.
  • Cynober, L.A. (2002) Plasma amino acid levels with a note on membrane transport: characteristics, regulation, and metabolic significance. Nutrition 18: 761766.
  • Daneshvar, H., Wyllie, S., Phillips, S., Hagan, P., and Burchmore, R. (2012) Comparative proteomics profiling of a gentamicin-attenuated Leishmania infantum cell line identifies key changes in parasite thiol-redox metabolism. J Proteomics 75: 14631471.
  • Denise, H., Giroud, C., Barrett, M.P., and Baltz, T. (1999) Affinity chromatography using trypanocidal arsenical drugs identifies a specific interaction between glycerol-3-phosphate dehydrogenase from Trypanosoma brucei and Cymelarsan. Eur J Biochem 259: 339346.
  • Ebikeme, C., Hubert, J., Biran, M., Gouspillou, G., Morand, P., Plazolles, N., et al. (2010) Ablation of succinate production from glucose metabolism in the procyclic trypanosomes induces metabolic switches to the glycerol 3-phosphate/dihydroxyacetone phosphate shuttle and to proline metabolism. J Biol Chem 285: 3231232324.
  • Else, A.J., Clarke, J.F., Willis, A., Jackman, S.A., Hough, D.W., and Danson, M.J. (1994) Dihydrolipoamide dehydrogenase in the Trypanosoma subgenus, trypanozoon. Mol Biochem Parasitol 64: 233239.
  • Gannavaram, S., Connelly, P.S., Daniels, M.P., Duncan, R., Salotra, P., and Nakhasi, H.L. (2012) Deletion of mitochondrial associated ubiquitin fold modifier protein Ufm1 in Leishmania donovani results in loss of beta-oxidation of fatty acids and blocks cell division in the amastigote stage. Mol Microbiol 86: 187198.
  • Ginger, M.L., Chance, M.L., and Goad, L.J. (1999) Elucidation of carbon sources used for the biosynthesis of fatty acids and sterols in the trypanosomatid Leishmania mexicana. Biochem J 342: 397405.
  • Ginger, M.L., Prescott, M.C., Reynolds, D.G., Chance, M.L., and Goad, L.J. (2000) Utilization of leucine and acetate as carbon sources for sterol and fatty acid biosynthesis by Old and New World Leishmania species, Endotrypanum monterogeii and Trypanosoma cruzi. Eur J Biochem 267: 25552566.
  • Gualdron-Lopez, M., Brennand, A., Hannaert, V., Quinones, W., Caceres, A.J., Bringaud, F., et al. (2012) When, how and why glycolysis became compartmentalised in the Kinetoplastea. A new look at an ancient organelle. Int J Parasitol 42: 120.
  • Guerranti, R., Pagani, R., Neri, S., Errico, S.V., Leoncini, R., and Marinello, E. (2001) Inhibition and regulation of rat liver L-threonine dehydrogenase by different fatty acids and their derivatives. Biochim Biophys Acta 1568: 4552.
  • Guler, J.L., Kriegova, E., Smith, T.K., Lukes, J., and Englund, P.T. (2008) Mitochondrial fatty acid synthesis is required for normal mitochondrial morphology and function in Trypanosoma brucei. Mol Microbiol 67: 11251142.
  • Han, C., Gu, H., Wang, J., Lu, W., Mei, Y., and Wu, M. (2013) Regulation of L-threonine dehydrogenase (TDH) in somatic cell reprogramming. Stem Cells 31: 953965.
  • Harlow, E., and Lane, D. (1988) Antibodies: A Laboratory Manual. New York: Cold Spring Harbor Laboratory Press.
  • Klein, R.A., and Linstead, D.J. (1976) Threonine as a perferred source of 2-carbon units for lipid synthesis in Trypanosoma brucei. Biochem Soc Trans 4: 4850.
  • Klein, R.A., Linstead, D.J., and Wheeler, M.V. (1975) Carbon dioxide fixation in trypanosomatids. Parasitology 71: 93107.
  • Lamour, N., Riviere, L., Coustou, V., Coombs, G.H., Barrett, M.P., and Bringaud, F. (2005) Proline metabolism in procyclic Trypanosoma brucei is down-regulated in the presence of glucose. J Biol Chem 280: 1190211910.
  • Linstead, D.J., Klein, R.A., and Cross, G.A. (1977) Threonine catabolism in Trypanosoma brucei. J Gen Microbiol 101: 243251.
  • Mazet, M., Harijan, R., Kiema, T., Haapalainen, A., Morand, P., Morales, J., et al. (2011) The characterization and evolutionary relationships of a trypanosomal thiolase. Int J Parasitol 41: 12731283.
  • Millerioux, Y., Morand, P., Biran, M., Mazet, M., Moreau, P., Wargnies, M., et al. (2012) ATP synthesis-coupled and -uncoupled acetate production from acetyl-CoA by the mitochondrial acetate : succinate CoA-transferase and acetyl-CoA thioesterase in Trypanosoma. J Biol Chem 287: 1718617197.
  • Ngo, H., Tschudi, C., Gull, K., and Ullu, E. (1998) Double-stranded RNA induces mRNA degradation in Trypanosoma brucei. Proc Natl Acad Sci USA 95: 1468714692.
  • Ohnishi, A., Osaki, T., Matahira, Y., Tsuka, T., Imagawa, T., Okamoto, Y., and Minami, S. (2012) Correlation of plasma amino acid concentrations and chondroprotective effects of glucosamine and fish collagen peptide on the development of osteoarthritis. J Vet Med Sci 75: 497502.
  • Opperdoes, F.R., and Borst, P. (1977) Localization of nine glycolytic enzymes in a microbody-like organelle in Trypanosoma brucei: the glycosome. FEBS Lett 80: 360364.
  • Riviere, L., van Weelden, S.W., Glass, P., Vegh, P., Coustou, V., Biran, M., et al. (2004) Acetyl:succinate CoA-transferase in procyclic Trypanosoma brucei. Gene identification and role in carbohydrate metabolism. J Biol Chem 279: 4533745346.
  • Riviere, L., Moreau, P., Allmann, S., Hahn, M., Biran, M., Plazolles, N., et al. (2009) Acetate produced in the mitochondrion is the essential precursor of lipid biosynthesis in procyclic trypanosomes. Proc Natl Acad Sci USA 106: 1269412699.
  • Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual. New York: Cold Spring Harbor Laboratory Press.
  • Saunders, E.C., Ng, W.W., Chambers, J.M., Ng, M., Naderer, T., Kromer, J.O., et al. (2011) Isotopomer profiling of Leishmania mexicana promastigotes reveals important roles for succinate fermentation and aspartate uptake in tricarboxylic acid cycle (TCA) anaplerosis, glutamate synthesis, and growth. J Biol Chem 286: 2770627717.
  • Tielens, A.G., van Grinsven, K.W., Henze, K., van Hellemond, J.J., and Martin, W. (2010) Acetate formation in the energy metabolism of parasitic helminths and protists. Int J Parasitol 40: 387397.
  • Van Hellemond, J.J., Opperdoes, F.R., and Tielens, A.G. (1998) Trypanosomatidae produce acetate via a mitochondrial acetate : succinate CoA transferase. Proc Natl Acad Sci USA 95: 30363041.
  • Van Weelden, S.W., Fast, B., Vogt, A., Van Der Meer, P., Saas, J., Van Hellemond, J.J., et al. (2003) Procyclic Trypanosoma brucei do not use Krebs cycle activity for energy generation. J Biol Chem 278: 1285412863.
  • Vigueira, P.A., and Paul, K.S. (2011) Requirement for acetyl-CoA carboxylase in Trypanosoma brucei is dependent upon the growth environment. Mol Microbiol 80: 117132.
  • Vincent, I.M., Creek, D., Watson, D.G., Kamleh, M.A., Woods, D.J., Wong, P.E., et al. (2010) A molecular mechanism for eflornithine resistance in African trypanosomes. PLoS Pathog 6: e1001204.
  • Vincent, I.M., Creek, D.J., Burgess, K., Woods, D.J., Burchmore, R.J., and Barrett, M.P. (2012) Untargeted metabolomics reveals a lack of synergy between nifurtimox and eflornithine against Trypanosoma brucei. PLoS Negl Trop Dis 6: e1618.
  • Wirtz, E., Leal, S., Ochatt, C., and Cross, G.A. (1999) A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei. Mol Biochem Parasitol 99: 89101.
  • Xiao, Y., Nguyen, S., Kim, S.H., Volkov, O.A., Tu, B.P., and Phillips, M.A. (2013) Product feedback regulation implicated in translational control of the Trypanosoma brucei S-adenosylmethionine decarboxylase regulatory subunit prozyme. Mol Microbiol 88: 846861.