SEARCH

SEARCH BY CITATION

References

  • Aldape, M.J., Packham, A.E., Nute, D.W., Bryant, A.E., and Stevens, D.L. (2013) Effects of ciprofloxacin on the expression and production of exotoxins by Clostridium difficile. J Med Microbiol 62: 741747.
  • Amimoto, K., Noro, T., Oishi, E., and Shimizu, M. (2007) A novel toxin homologous to large clostridial cytotoxins found in culture supernatant of Clostridium perfringens type C. Microbiology 153: 11981206.
  • Antunes, A., Martin-Verstraete, I., and Dupuy, B. (2011) CcpA-mediated repression of Clostridium difficile toxin gene expression. Mol Microbiol 79: 882899.
  • Antunes, A., Camiade, E., Monot, M., Courtois, E., Barbut, F., Sernova, N.V., et al. (2012) Global transcriptional control by glucose and carbon regulator CcpA in Clostridium difficile. Nucleic Acids Res 40: 1070110718.
  • Bakker, D., Smits, W.K., Kuijper, E.J., and Corver, J. (2012) TcdC does not significantly repress toxin expression in Clostridium difficile 630DeltaErm. PLoS ONE 7: e43247.
  • Banu, S., Ohtani, K., Yaguchi, H., Swe, T., Cole, S.T., Hayashi, H., and Shimizu, T. (2000) Identification of novel VirR/VirS-regulated genes in Clostridium perfringens. Mol Microbiol 35: 854864.
  • Bette, P., Oksche, A., Mauler, F., von Eichel-Streiber, C., Popoff, M.R., and Habermann, E. (1991) A comparative biochemical, pharmacological and immunological study of Clostridium novyi alpha-toxin, C. difficile toxin B and C. sordellii lethal toxin. Toxicon 29: 877887.
  • Bradshaw, M., Marshall, K.M., Heap, J.T., Tepp, W.H., Minton, N.P., and Johnson, E.A. (2010) Construction of a nontoxigenic Clostridium botulinum strain for food challenge studies. Appl Environ Microbiol 76: 387393.
  • Braun, V., Hundsberger, T., Leukel, P., Sauerborn, M., and von Eichel-Streiber, C. (1996) Definition of the single integration site of the pathogenicity locus in Clostridium difficile. Gene 181: 2938.
  • Capra, E.J., and Laub, M.T. (2012) Evolution of two-component signal transduction systems. Annu Rev Microbiol 66: 325347.
  • Carter, G.P., Lyras, D., Allen, D.L., Mackin, K.E., Howarth, P.M., O'Connor, J.R., and Rood, J.I. (2007) Binary toxin production in Clostridium difficile is regulated by CdtR, a LytTR family response regulator. J Bacteriol 189: 72907301.
  • Carter, G.P., Awad, M.M., Hao, Y., Thelen, T., Bergin, I.L., Howarth, P.M., et al. (2011a) TcsL is an essential virulence factor in Clostridium sordellii ATCC 9714. Infect Immun 79: 10251032.
  • Carter, G.P., Douce, G.R., Govind, R., Howarth, P.M., Mackin, K.E., Spencer, J., et al. (2011b) The anti-sigma factor TcdC modulates hypervirulence in an epidemic BI/NAP1/027 clinical isolate of Clostridium difficile. PLoS Pathog 7: e1002317.
  • Carter, G.P., Rood, J.I., and Lyras, D. (2012) The role of toxin A and toxin B in the virulence of Clostridium difficile. Trends Microbiol 20: 2129.
  • Cartman, S.T., Kelly, M.L., Heeg, D., Heap, J.T., and Minton, N.P. (2012) Precise manipulation of the Clostridium difficile chromosome reveals a lack of association between the tcdC genotype and toxin production. Appl Environ Microbiol 78: 46834690.
  • Chen, J., Rood, J.I., and McClane, B.A. (2011a) ) Epsilon-toxin production by Clostridium perfringens type D strain CN3718 is dependent upon the agr operon but not the VirS/VirR two-component regulatory system. mBio 2: e00275-11.
  • Chen, Y., McClane, B.A., Fisher, D.J., Rood, J.I., and Gupta, P. (2005) Construction of an alpha toxin gene knockout mutant of Clostridium perfringens type A by use of a mobile group II intron. Appl Environ Microbiol 71: 75427547.
  • Chen, Y., Indurthi, D.C., Jones, S.W., and Papoutsakis, E.T. (2011b) Small RNAs in the genus Clostridium. mBio 2: e00340-00310.
  • Cheung, J.K., and Rood, J.I. (2000) The VirR response regulator from Clostridium perfringens binds independently to two imperfect direct repeats located upstream of the pfoA promoter. J Bacteriol 182: 5766.
  • Cheung, J.K., Dupuy, B., Deveson, D.S., and Rood, J.I. (2004) The spatial organization of the VirR boxes is critical for VirR-mediated expression of the perfringolysin O gene, pfoA, from Clostridium perfringens. J Bacteriol 186: 33213330.
  • Cheung, J.K., Awad, M.M., McGowan, S., and Rood, J.I. (2009) Functional analysis of the VirSR phosphorelay from Clostridium perfringens. PLoS ONE 4: e5849.
  • Cheung, J.K., Keyburn, A.L., Carter, G.P., Lanckriet, A.L., Immerseel, F.V., Moore, R.J., and Rood, J.I. (2010) The VirSR two-component signal transduction system regulates NetB toxin production in Clostridium perfringens. Infect Immun 78: 30643072.
  • Cheung, J.K., Low, L., Hiscox, T.J., and Rood, J.I. (2013) Regulation of extracellular toxin production in Clostridium perfringens. In Regulation of Bacterial Virulence. Vasil, D.L. , and Darwin, A.J. (eds). Washington DC: ASM Press, pp. 281294.
  • Chilton, C.H., Freeman, J., Crowther, G.S., Todhunter, S.L., Nicholson, S., and Wilcox, M.H. (2012) Co-amoxiclav induces proliferation and cytotoxin production of Clostridium difficile ribotype 027 in a human gut model. J Antimicrob Chemother 67: 951954.
  • Connan, C., Brueggemann, H., Mazuet, C., Raffestin, S., Cayet, N., and Popoff, M.R. (2012) Two-component systems are involved in the regulation of botulinum neurotoxin synthesis in Clostridium botulinum type A strain Hall. PLoS ONE 7: e41848.
  • Cooksley, C.M., Davis, I.J., Winzer, K., Chan, W.C., Peck, M.W., and Minton, N.P. (2010) Regulation of neurotoxin production and sporulation by a putative agrBD signaling system in proteolytic Clostridium botulinum. Appl Environ Microbiol 76: 44484460.
  • Couesnon, A., Raffestin, S., and Popoff, M.R. (2006) Expression of botulinum neurotoxins A and E, and associated non-toxin genes, during the transition phase and stability at high temperature: analysis by quantitative reverse transcription-PCR. Microbiology 152: 759770.
  • Deakin, L.J., Clare, S., Fagan, R.P., Dawson, L.F., Pickard, D.J., West, M.R., et al. (2012) The Clostridium difficile spo0A gene is a persistence and transmission factor. Infect Immun 80: 27042711.
  • Dineen, S.S., Villapakkam, A.C., Nordman, J.T., and Sonenshein, A.L. (2007) Repression of Clostridium difficile toxin gene expression by CodY. Mol Microbiol 66: 206219.
  • Dineen, S.S., McBride, S.M., and Sonenshein, A.L. (2010) Integration of metabolism and virulence by Clostridium difficile CodY. J Bacteriol 192: 53505362.
  • Duncan, C.L. (1973) Time of enterotoxin formation and release during sporulation of Clostridium perfringens type A. J Bacteriol 113: 932936.
  • Dupuy, B., and Sonenshein, A.L. (1998) Regulated transcription of Clostridium difficile toxin genes. Mol Microbiol 27: 107120.
  • Dupuy, B., Raffestin, S., Matamouros, S., Mani, N., Popoff, M.R., and Sonenshein, A.L. (2006) Regulation of toxin and bacteriocin gene expression in Clostridium by interchangeable RNA polymerase sigma factors. Mol Microbiol 60: 10441057.
  • Dupuy, B., Govind, R., Antunes, A., and Matamouros, S. (2008) Clostridium difficile toxin synthesis is negatively regulated by TcdC. J Med Microbiol 57: 685689.
  • Fernandez-Miyakawa, M.E., Fisher, D.J., Poon, R., Sayeed, S., Adams, V., Rood, J.I., et al. (2007) Both epsilon-toxin and beta-toxin are important for the lethal properties of Clostridium perfringens type B isolates in the mouse intravenous injection model. Infect Immun 75: 14431452.
  • Govind, R., and Dupuy, B. (2012) Secretion of Clostridium difficile toxins A and B requires the holin-like protein TcdE. PLoS Pathog 8: e1002727.
  • Harry, K.H., Zhou, R., Kroos, L., and Melville, S.B. (2009) Sporulation and enterotoxin (CPE) synthesis are controlled by the sporulation-specific sigma factors SigE and SigK in Clostridium perfringens. J Bacteriol 191: 27282742.
  • Heap, J.T., Pennington, O.J., Cartman, S.T., Carter, G.P., and Minton, N.P. (2007) The ClosTron: a universal gene knock-out system for the genus Clostridium. J Microbiol Methods 70: 452464.
  • Huang, I.H., Waters, M., Grau, R.R., and Sarker, M.R. (2004) Disruption of the gene (spo0A) encoding sporulation transcription factor blocks endospore formation and enterotoxin production in enterotoxigenic Clostridium perfringens type A. FEMS Microbiol Lett 233: 233240.
  • Hundsberger, T., Braun, V., Weidmann, M., Leukel, P., Sauerborn, M., and von Eichel-Streiber, C. (1997) Transcription analysis of the genes tcdA-E of the pathogenicity locus of Clostridium difficile. Eur J Biochem 244: 735742.
  • Johnson, E.A., and Bradshaw, M. (2001) Clostridium botulinum and its neurotoxins: a metabolic and cellular perspective. Toxicon 39: 17031722.
  • Karlsson, S., Burman, L.G., and Akerlund, T. (1999) Suppression of toxin production in Clostridium difficile VPI 10463 by amino acids. Microbiology 145 (Part 7): 16831693.
  • Karlsson, S., Lindberg, A., Norin, E., Burman, L.G., and Akerlund, T. (2000) Toxins, butyric acid, and other short-chain fatty acids are coordinately expressed and down-regulated by cysteine in Clostridium difficile. Infect Immun 68: 58815888.
  • Karlsson, S., Dupuy, B., Mukherjee, K., Norin, E., Burman, L.G., and Akerlund, T. (2003) Expression of Clostridium difficile toxins A and B and their sigma factor TcdD is controlled by temperature. Infect Immun 71: 17841793.
  • Katayama, S., Matsushita, O., Jung, C.M., Minami, J., and Okabe, A. (1999) Promoter upstream bent DNA activates the transcription of the Clostridium perfringens phospholipase C gene in a low temperature-dependent manner. EMBO J 18: 34423450.
  • Katona, P. (2012) Botulinum toxin: therapeutic agent to cosmetic enhancement to lethal biothreat. Anaerobe 18: 240243.
  • Lalaouna, D., Simoneau-Roy, M., Lafontaine, D., and Masse, E. (2013) Regulatory RNAs and target mRNA decay in prokaryotes. Biochim Biophys Acta 1829: 742747.
  • Li, J., and McClane, B.A. (2010) Evaluating the involvement of alternative sigma factors SigF and SigG in Clostridium perfringens sporulation and enterotoxin synthesis. Infect Immun 78: 42864293.
  • Li, J., Chen, J., Vidal, J.E., and McClane, B.A. (2011) The Agr-like quorum-sensing system regulates sporulation and production of enterotoxin and beta2 toxin by Clostridium perfringens type A non-food-borne human gastrointestinal disease strain F5603. Infect Immun 79: 24512459.
  • Lyristis, M., Bryant, A.E., Sloan, J., Awad, M.M., Nisbet, I.T., Stevens, D.L., and Rood, J.I. (1994) Identification and molecular analysis of a locus that regulates extracellular toxin production in Clostridium perfringens. Mol Microbiol 12: 761777.
  • Ma, M., Vidal, J., Saputo, L., McClane, B.A., and Uzal, F. (2011) The VirS/VirR two-component system regulates the anaerobic cytotoxicity, intestinal pathogenicity, and enterotoxemic lethality of Clostridium perfringens type C isolate CN3685. mBio 2: e00338-10.
  • Mackin, K.E., Carter, G.P., Howarth, P., Rood, J.I., and Lyras, D. (2013) Spo0A differentially regulates toxin production in evolutionarily diverse strains of Clostridium difficile. PLoS ONE 8: e79666.
  • Mani, N., and Dupuy, B. (2001) Regulation of toxin synthesis in Clostridium difficile by an alternative RNA polymerase sigma factor. Proc Natl Acad Sci USA 98: 58445849.
  • Mani, N., Lyras, D., Barroso, L., Howarth, P., Wilkins, T., Rood, J.I., et al. (2002) Environmental response and autoregulation of Clostridium difficile TxeR, a sigma factor for toxin gene expression. J Bacteriol 184: 59715978.
  • Martin, M.J., Clare, S., Goulding, D., Faulds-Pain, A., Barquist, L., Browne, H.P., et al. (2013) The agr locus regulates virulence and colonization genes in Clostridium difficile 027. J Bacteriol 195: 36723681.
  • Matamouros, S., England, P., and Dupuy, B. (2007) Clostridium difficile toxin expression is inhibited by the novel regulator TcdC. Mol Microbiol 64: 12741288.
  • Mellanby, J., and Green, J. (1981) How does tetanus toxin act? Neuroscience 6: 281300.
  • Mendez, M.B., Goni, A., Ramirez, W., and Grau, R.R. (2012) Sugar inhibits the production of the toxins that trigger clostridial gas gangrene. Microb Pathog 52: 8591.
  • Montecucco, C., and Schiavo, G. (1994) Mechanism of action of tetanus and botulinum neurotoxins. Mol Microbiol 13: 18.
  • Novick, R.P. (2003) Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol Microbiol 48: 14291449.
  • O'Connor, J.R., Lyras, D., Farrow, K.A., Adams, V., Powell, D.R., Hinds, J., et al. (2006) Construction and analysis of chromosomal Clostridium difficile mutants. Mol Microbiol 61: 13351351.
  • Obana, N., Shirahama, Y., Abe, K., and Nakamura, K. (2010) Stabilization of Clostridium perfringens collagenase mRNA by VR-RNA-dependent cleavage in 5′ leader sequence. Mol Microbiol 77: 14161428.
  • Ohtani, K., Bhowmik, S.K., Hayashi, H., and Shimizu, T. (2002) Identification of a novel locus that regulates expression of toxin genes in Clostridium perfringens. FEMS Microbiol Lett 209: 113118.
  • Ohtani, K., Kawsar, H.I., Okumura, K., Hayashi, H., and Shimizu, T. (2003) The VirR/VirS regulatory cascade affects transcription of plasmid-encoded putative virulence genes in Clostridium perfringens strain 13. FEMS Microbiol Lett 222: 137141.
  • Ohtani, K., Yuan, Y., Hassan, S., Wang, R., Wang, Y., and Shimizu, T. (2009) Virulence gene regulation by the agr system in Clostridium perfringens. J Bacteriol 191: 39193927.
  • Ohtani, K., Hirakawa, H., Tashiro, K., Yoshizawa, S., Kuhara, S., and Shimizu, T. (2010) Identification of a two-component VirR/VirS regulon in Clostridium perfringens. Anaerobe 16: 258264.
  • Ohtani, K., Hirakawa, H., Paredes-Sabja, D., Tashiro, K., Kuhara, S., Sarker, M.R., and Shimizu, T. (2013) Unique regulatory mechanism of sporulation and enterotoxin production in Clostridium perfringens. J Bacteriol 195: 29312936.
  • Okumura, K., Ohtani, K., Hayashi, H., and Shimizu, T. (2008) Characterization of genes regulated directly by the VirR/VirS system in Clostridium perfringens. J Bacteriol 190: 77197727.
  • Otto, M. (2001) Staphylococcus aureus and Staphylococcus epidermidis peptide pheromones produced by the accessory gene regulator agr system. Peptides 22: 16031608.
  • Paredes-Sabja, D., Sarker, N., and Sarker, M.R. (2011) Clostridium perfringens tpeL is expressed during sporulation. Microb Pathog 51: 384388.
  • Raffestin, S., Dupuy, B., Marvaud, J.C., and Popoff, M.R. (2005) BotR/A and TetR are alternative RNA polymerase sigma factors controlling the expression of the neurotoxin and associated protein genes in Clostridium botulinum type A and Clostridium tetani. Mol Microbiol 55: 235249.
  • Rood, J.I. (1998) Virulence genes of Clostridium perfringens. Annu Rev Microbiol 52: 333360.
  • Rosenbusch, K.E., Bakker, D., Kuijper, E.J., and Smits, W.K. (2012) C. difficile 630Deltaerm Spo0A regulates sporulation, but does not contribute to toxin production, by direct high-affinity binding to target DNA. PLoS ONE 7: e48608.
  • Sauer, U., Treuner, A., Buchholz, M., Santangelo, J.D., and Durre, P. (1994) Sporulation and primary sigma factor homologous genes in Clostridium acetobutylicum. J Bacteriol 176: 65726582.
  • Saujet, L., Monot, M., Dupuy, B., Soutourina, O., and Martin-Verstraete, I. (2011) The key sigma factor of transition phase, SigH, controls sporulation, metabolism, and virulence factor expression in Clostridium difficile. J Bacteriol 193: 31863196.
  • Schechter, R., and Arnon, S.S. (2000) Extreme potency of botulinum toxin. Lancet 355: 237238.
  • Sebaihia, M., Wren, B.W., Mullany, P., Fairweather, N.F., Minton, N., Stabler, R., et al. (2006) The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat Genet 38: 779786.
  • Shimizu, T., Ba-Thein, W., Tamaki, M., and Hayashi, H. (1994) The virR gene, a member of a class of two-component response regulators, regulates the production of perfringolysin O, collagenase, and hemagglutinin in Clostridium perfringens. J Bacteriol 176: 16161623.
  • Shimizu, T., Yaguchi, H., Ohtani, K., Banu, S., and Hayashi, H. (2002) Clostridial VirR/VirS regulon involves a regulatory RNA molecule for expression of toxins. Mol Microbiol 43: 257265.
  • Sirigi Reddy, A.R., Girinathan, B.P., Zapotocny, R., and Govind, R. (2013) Identification and characterization of Clostridium sordellii toxin gene regulator. J Bacteriol 195: 42464254.
  • Songer, J.G. (1996) Clostridial enteric diseases of domestic animals. Clin Microbiol Rev 9: 216234.
  • Songer, J.G. (1998) Clostridial diseases of small ruminants. Vet Res 29: 219232.
  • Songer, J.G. (2010) Clostridia as agents of zoonotic disease. Vet Microbiol 140: 399404.
  • Soutourina, O.A., Monot, M., Boudry, P., Saujet, L., Pichon, C., Sismeiro, O., et al. (2013) Genome-wide identification of regulatory RNAs in the human pathogen Clostridium difficile. PLoS Genet 9: e1003493.
  • Stevens, D.L., Aldape, M.J., and Bryant, A.E. (2012) Life-threatening clostridial infections. Anaerobe 18: 254259.
  • Storz, G., Vogel, J., and Wassarman, K.M. (2011) Regulation by small RNAs in bacteria: expanding frontiers. Mol Cell 43: 880891.
  • Sullivan, N.M., Pellett, S., and Wilkins, T.D. (1982) Purification and characterization of toxins A and B of Clostridium difficile. Infect Immun 35: 10321040.
  • Underwood, S., Guan, S., Vijayasubhash, V., Baines, S.D., Graham, L., Lewis, R.J., et al. (2009) Characterization of the sporulation initiation pathway of Clostridium difficile and its role in toxin production. J Bacteriol 191: 72967305.
  • Uzal, F.A., and McClane, B.A. (2011) Recent progress in understanding the pathogenesis of Clostridium perfringens type C infections. Vet Microbiol 153: 3743.
  • Varga, J., Stirewalt, V.L., and Melville, S.B. (2004) The CcpA protein is necessary for efficient sporulation and enterotoxin gene (cpe) regulation in Clostridium perfringens. J Bacteriol 186: 52215229.
  • Vidal, J.E., Chen, J., Li, J., and McClane, B.A. (2009a) Use of an EZ-Tn5-based random mutagenesis system to identify a novel toxin regulatory locus in Clostridium perfringens strain 13. PLoS ONE 4: e6232.
  • Vidal, J.E., Ohtani, K., Shimizu, T., and McClane, B.A. (2009b) Contact with enterocyte-like Caco-2 cells induces rapid upregulation of toxin production by Clostridium perfringens type C isolates. Cell Microbiol 11: 13061328.
  • Vidal, J.E., Ma, M., Saputo, J., Garcia, J., Uzal, F.A., and McClane, B.A. (2012) Evidence that the Agr-like quorum sensing system regulates the toxin production, cytotoxicity and pathogenicity of Clostridium perfringens type C isolate CN3685. Mol Microbiol 83: 179194.
  • Warny, M., Pepin, J., Fang, A., Killgore, G., Thompson, A., Brazier, J., et al. (2005) Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet 366: 10791084.
  • Yutin, N., and Galperin, M.Y. (2013) A genomic update on clostridial phylogeny: Gram-negative spore formers and other misplaced clostridia. Environ Microbiol 15: 26312641.
  • Zhang, Z., Korkeala, H., Dahlsten, E., Sahala, E., Heap, J.T., Minton, N.P., and Lindstrom, M. (2013) Two-component signal transduction system CBO0787/CBO0786 represses transcription from botulinum neurotoxin promoters in Clostridium botulinum ATCC 3502. PLoS Pathog 9: e1003252.
  • Zhao, Y., and Melville, S.B. (1998) Identification and characterization of sporulation-dependent promoters upstream of the enterotoxin gene (cpe) of Clostridium perfringens. J Bacteriol 180: 136142.