SEARCH

SEARCH BY CITATION

References

  • Abranches, J., Nascimento, M.M., Zeng, L., Browngardt, C.M., Wen, Z.T., Rivera, M.F., and Burne, R.A. (2008) CcpA regulates central metabolism and virulence gene expression in Streptococcus mutans. J Bacteriol 190: 23402349.
  • Antunes, A., Camiade, E., Monot, M., Courtois, E., Barbut, F., Sernova, N., V, et al. (2012) Global transcriptional control by glucose and carbon regulator CcpA in Clostridium difficile. Nucleic Acids Res 40: 1070110718.
  • Arends, J.P., and Zanen, H.C. (1988) Meningitis caused by Streptococcus suis in humans. Rev Infect Dis 10: 131137.
  • Bailey, T.L., Williams, N., Misleh, C., and Li, W.W. (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34: W369W373.
  • Battke, F., Symons, S., and Nieselt, K. (2010) Mayday-integrative analytics for expression data. BMC Bioinformatics 11: 121.
  • Buescher, J.M., Liebermeister, W., Jules, M., Uhr, M., Muntel, J., Botella, E., et al. (2012) Global network reorganization during dynamic adaptations of Bacillus subtilis metabolism. Science 335: 10991103.
  • Carvalho, S.M., Kloosterman, T.G., Kuipers, O.P., and Neves, A.R. (2011) CcpA ensures optimal metabolic fitness of Streptococcus pneumoniae. PLoS ONE 6: e26707.
  • Carver, T., Thomson, N., Bleasby, A., Berriman, M., and Parkhill, J. (2009) DNAPlotter: circular and linear interactive genome visualization. Bioinformatics 25: 119120.
  • Chaix, D., Ferguson, M.L., Atmanene, C., Van Dorsselaer, A., Sanglier-Cianferani, S., Royer, C.A., and Declerck, N. (2010) Physical basis of the inducer-dependent cooperativity of the central glycolytic genes repressor/DNA complex. Nucleic Acids Res 38: 59445957.
  • Chanter, N., Jones, P.W., and Alexander, T.J. (1993) Meningitis in pigs caused by Streptococcus suis – a speculative review. Vet Microbiol 36: 3955.
  • Clifton-Hadley, F.A., and Alexander, T.J. (1980) The carrier site and carrier rate of Streptococcus suis type II in pigs. Vet Rec 107: 4041.
  • Deutscher, J., Kuster, E., Bergstedt, U., Charrier, V., and Hillen, W. (1995) Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in gram-positive Bacteria. Mol Microbiol 15: 10491053.
  • Deutscher, J., Francke, C., and Postma, P.W. (2006) How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 70: 9391031.
  • Drzewiecki, K., Eymann, C., Mittenhuber, G., and Hecker, M. (1998) The yvyD gene of Bacillus subtilis is under dual control of sigmaB and sigmaH. J Bacteriol 180: 66746680.
  • Dubreuil, J.D., Jacques, M., Brochu, D., Frenette, M., and Vadeboncoeur, C. (1996) Surface location of HPr, a phosphocarrier of the phosphoenolpyruvate:sugar phosphotransferase system in Streptococcus suis. Microbiology 142: 837843.
  • Fittipaldi, N., Segura, M., Grenier, D., and Gottschalk, M. (2012) Virulence factors involved in the pathogenesis of the infection caused by the swine pathogen and zoonotic agent Streptococcus suis. Future Microbiol 7: 259279.
  • Fujita, Y. (2009) Carbon catabolite control of the metabolic network in Bacillus subtilis. Biosci Biotechnol Biochem 73: 245259.
  • Fulde, M., Willenborg, J., de Greeff, A., Benga, L., Smith, H.E., Valentin-Weigand, P., and Goethe, R. (2011) ArgR is an essential local transcriptional regulator of the arcABC operon in Streptococcus suis and is crucial for biological fitness in an acidic environment. Microbiology 157: 572582.
  • Giammarinaro, P., and Paton, J.C. (2002) Role of RegM, a homologue of the catabolite repressor protein CcpA, in the virulence of Streptococcus pneumoniae. Infect Immun 70: 54545461.
  • Gruening, P., Fulde, M., Valentin-Weigand, P., and Goethe, R. (2006) Structure, regulation, and putative function of the arginine deiminase system of Streptococcus suis. J Bacteriol 188: 361369.
  • Holden, M.T.G., Hauser, H., Sanders, M., Thi, H.N., Cherevach, I., Cronin, A., et al. (2009) Rapid evolution of virulence and drug resistance in the emerging zoonotic pathogen Streptococcus suis. PLoS ONE 4: e6072.
  • Iyer, R., Baliga, N.S., and Camilli, A. (2005) Catabolite control protein A (CcpA) contributes to virulence and regulation of sugar metabolism in Streptococcus pneumoniae. J Bacteriol 187: 83408349.
  • Ji, H., Jiang, H., Ma, W., Johnson, D.S., Myers, R.M., and Wong, W.H. (2008) An integrated software system for analyzing ChIP-chip and ChIP-seq data. Nat Biotechnol 26: 12931300.
  • Kruger, S., Gertz, S., and Hecker, M. (1996) Transcriptional analysis of bglPH expression in Bacillus subtilis: evidence for two distinct pathways mediating carbon catabolite repression. J Bacteriol 178: 26372644.
  • Landmann, J.J., Werner, S., Hillen, W., Stulke, J., and Gorke, B. (2012) Carbon source control of the phosphorylation state of the Bacillus subtilis carbon-flux regulator Crh in vivo. FEMS Microbiol Lett 327: 4753.
  • Li, H., and Durbin, R. (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26: 589595.
  • Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al. (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25: 20782079.
  • Lulko, A.T., Buist, G., Kok, J., and Kuipers, O.P. (2007) Transcriptome analysis of temporal regulation of carbon metabolism by CcpA in Bacillus subtilis reveals additional target genes. J Mol Microbiol Biotechnol 12: 8295.
  • Mai, N.T., Hoa, N.T., Nga, T.V., Linh, L.D., Chau, T.T., Sinh, D., X, et al. (2008) Streptococcus suis meningitis in adults in Vietnam. Clin Infect Dis 46: 659667.
  • Miwa, Y., Nakata, A., Ogiwara, A., Yamamoto, M., and Fujita, Y. (2000) Evaluation and characterization of catabolite-responsive elements (cre) of Bacillus subtilis. Nucleic Acids Res 28: 12061210.
  • Munch, R., Hiller, K., Grote, A., Scheer, M., Klein, J., Schobert, M., and Jahn, D. (2005) Virtual footprint and PRODORIC: an integrative framework for regulon prediction in prokaryotes. Bioinformatics 21: 41874189.
  • van Opijnen, T., and Camilli, A. (2010) Genome-wide fitness and genetic interactions determined by Tn-seq, a high-throughput massively parallel sequencing method for microorganisms. Curr Protoc Microbiol Chapter 1: Unit1E.
  • Postma, P.W., Lengeler, J.W., and Jacobson, G.R. (1993) Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57: 543594.
  • Robitaille, D., Gauthier, L., and Vadeboncoeur, C. (1991) The presence of two forms of the phosphocarrier protein HPr of the phosphoenolpyruvate:sugar phosphotransferase system in streptococci. Biochimie 73: 573581.
  • Rutherford, K., Parkhill, J., Crook, J., Horsnell, T., Rice, P., Rajandream, M.A., and Barrell, B. (2000) Artemis: sequence visualization and annotation. Bioinformatics 16: 944945.
  • Seshasayee, A.S.N., Bertone, P., Fraser, G.M., and Luscombe, N.M. (2006) Transcriptional regulatory networks in bacteria: from input signals to output responses. Curr Opin Microbiol 9: 511519.
  • Shelburne, S.A., Keith, D., Horstmann, N., Sumby, P., Davenport, M.T., Graviss, E.A., et al. (2008) A direct link between carbohydrate utilization and virulence in the major human pathogen group A Streptococcus. Proc Natl Acad Sci USA 105: 16981703.
  • Shelburne, S.A., Olsen, R.J., Suber, B., Sahasrabhojane, P., Sumby, P., Brennan, R.G., and Musser, J.M. (2010) A Combination of independent transcriptional regulators shapes bacterial virulence gene expression during infection. PLoS Pathog 6: e1000817.
  • Stulke, J., and Hillen, W. (2000) Regulation of carbon catabolism in Bacillus species. Annu Rev Microbiol 54: 849880.
  • Tagami, K., Nanamiya, H., Kazo, Y., Maehashi, M., Suzuki, S., Namba, E., et al. (2012) Expression of a small (p)ppGpp synthetase, YwaC, in the (p)ppGpp(0) mutant of Bacillus subtilis triggers YvyD-dependent dimerization of ribosome. Microbiologyopen 1: 115134.
  • Titgemeyer, F., and Hillen, W. (2002) Global control of sugar metabolism: a Gram-positive solution. Antonie Van Leeuwenhoek 82: 5971.
  • Vadeboncoeur, C., and Pelletier, M. (1997) The phosphoenolpyruvate:sugar phosphotransferase system of oral streptococci and its role in the control of sugar metabolism. FEMS Microbiol Rev 19: 187207.
  • Willenborg, J., Fulde, M., de Greeff, A., Rohde, M., Smith, H.E., Valentin-Weigand, P., and Goethe, R. (2011) Role of glucose and CcpA in capsule expression and virulence of Streptococcus suis. Microbiology 157: 18231833.
  • Zeng, L., and Burne, R.A. (2010) Seryl-phosphorylated HPr regulates CcpA-independent carbon catabolite repression in conjunction with PTS permeases in Streptococcus mutans. Mol Microbiol 75: 11451158.
  • Zomer, A.L., Buist, G., Larsen, R., Kok, J., and Kuipers, O.P. (2007) Time-resolved determination of the CcpA regulon of Lactococcus lactis subsp. cremoris MG1363. J Bacteriol 189: 13661381.