SEARCH

SEARCH BY CITATION

References

  • Allison, K.R., Brynildsen, M.P., and Collins, J.J. (2011) Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature 473: 216220.
  • Alvarez-Ortega, C., and Harwood, C.S. (2007) Responses of Pseudomonas aeruginosa to low oxygen indicate that growth in the cystic fibrosis lung is by aerobic respiration. Mol Microbiol 65: 153165.
  • Barnishan, J., and Ayers, L.W. (1979) Rapid identification of nonfermentative gram-negative rods by the Corning N/F system. J Clin Microbiol 9: 239243.
  • Baron, S.S., and Rowe, J.J. (1981) Antibiotic action of pyocyanin. Antimicrob Agents Chemother 20: 814820.
  • Beck, S., and Schink, B. (1995) Acetate oxidation through a modified citric acid cycle in Propionibacterium freudenreichii. Arch Microbiol 163: 182187.
  • Behrends, V., Ebbels, T.M.D., Williams, H.D., and Bundy, J.G. (2009) Time-resolved metabolic footprinting for nonlinear modeling of bacterial substrate utilization. Appl Environ Microbiol 75: 24532463.
  • Benz, M., Schink, B., and Brune, A. (1998) Humic acid reduction by Propionibacterium freudenreichii and other fermenting bacteria. Appl Environ Microbiol 64: 45074512.
  • Britigan, B.E., Roeder, T.L., and Rasmussen, G.T. (1992) Interaction of the Pseudomonas aeruginosa secretory products pyocyanin and pyochelin generates hydroxyl radical and causes synergistic damage to endothelial cells. J Clin Invest 90: 21872196.
  • Calamita, H.G., Ehringer, W.D., Koch, A.L., and Doyle, R.J. (2001) Evidence that the cell wall of Bacillus subtilis is protonated during respiration. Proc Natl Acad Sci USA 98: 1526015263.
  • Carlson, C.A., and Ingraham, J.L. (1983) Comparison of denitrification by Pseudomonas stutzeri, Pseudomonas aeruginosa, and Paracoccus denitrificans. Appl Environ Microbiol 45: 12471253.
  • Chang, D.-E., Shin, S., Rhee, J.-S., and Pan, J.-G. (1999) Acetate metabolism in a pta mutant of Escherichia coli W3110: importance of maintaining acetyl coenzyme A flux for growth and survival. J Bacteriol 181: 66566663.
  • Chang, Y.-Y., and Cronan, J.E. (1983) Genetic and biochemical analyses of Escherichia coli strains having a mutation in the structural gene (poxB) for pyruvate oxidase. J Bacteriol 154: 756772.
  • Cox, C.D. (1986) Role of pyocyanin in the acquisition of iron from transferrin. Infect Immun 52: 263270.
  • Dietrich, L.E.P., Price-Whelan, A., Petersen, A., Whiteley, M., and Newman, D.K. (2006) The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol Microbiol 61: 13081321.
  • Dietrich, L.E.P., Teal, T.K., Price-Whelan, A., and Newman, D.K. (2008) Redox-active antibiotics control gene expression and community behavior in divergent bacteria. Science 321: 12031206.
  • Dietrich, L.E.P., Okegbe, C., Price-Whelan, A., Sakhtah, H., Hunter, R.C., and Newman, D.K. (2013) Bacterial community morphogenesis is intimately linked to the intracellular redox state. J Bacteriol 195: 13711380.
  • Emde, R., and Schink, B. (1990) Oxidation of glycerol, lactate, and propionate by Propionibacterium freudenreichii in a poised-potential amperometric culture system. Arch Microbiol 153: 506512.
  • Emde, R., Swain, A., and Schink, B. (1989) Anaerobic oxidation of glycerol by Escherichia coli in an amperometric poised-potential culture system. Appl Microbiol Biotechnol 32: 170175.
  • Eschbach, M., Schreiber, K., Trunk, K., Buer, J., Jahn, D., and Schobert, M. (2004) Long-term anaerobic survival of the opportunistic pathogen Pseudomonas aeruginosa via pyruvate fermentation. J Bacteriol 186: 45964604.
  • Gu, M., and Imlay, J.A. (2011) The SoxRS response of Escherichia coli is directly activated by redox-cycling drugs rather than by superoxide. Mol Microbiol 79: 11361150.
  • Hopfer, U., Lehninger, A.L., and Thompson, T.E. (1968) Protonic conductance across phospholipid bilayer membranes induced by uncoupling agents for oxidative phosphorylation. Proc Natl Acad Sci USA 59: 484490.
  • Hu, Y., and Coates, A.R. (1999) Transcription of the stationary-phase-associated hspX gene of Mycobacterium tuberculosis is inversely related to synthesis of the 16-kilodalton protein. J Bacteriol 181: 13801387.
  • Hunter, R.C., Klepac-Ceraj, V., Lorenzi, M.M., Grotzinger, H., Martin, T.R., and Newman, D.K. (2012) Phenazine content in the cystic fibrosis respiratory tract negatively correlates with lung function and microbial complexity. Am J Respir Cell Mol Biol 47: 738745.
  • Jolliffe, L.K., Doyle, R.J., and Streips, U.N. (1981) The energized membrane and cellular autolysis in Bacillus subtilis. Cell 25: 753763.
  • Keren, I., Shah, D., Spoering, A., Kaldalu, N., and Lewis, K. (2004) Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J Bacteriol 186: 81728180.
  • Klein, A.H., Shulla, A., Reimann, S.A., Keating, D.H., and Wolfe, A.J. (2007) The intracellular concentration of acetyl phosphate in Escherichia coli is sufficient for direct phosphorylation of two-component response regulators. J Bacteriol 189: 55745581.
  • Kolpen, M., Kühl, M., Bjarnsholt, T., Moser, C., Hansen, C.R., Liengaard, L., et al. (2014) Nitrous oxide production in sputum from cystic fibrosis patiens with chronic Pseudomonas aeruginosa lung infection. PLoS ONE 9: e84353.
  • Krulwich, T.A., Sachs, G., and Padan, E. (2011) Molecular aspects of bacterial pH sensing and homeostasis. Nat Rev Microbiol 9: 330343.
  • Lau, G.W., Hassett, D.J., and Britigan, B.E. (2005) Modulation of lung epithelial functions by Pseudomonas aeruginosa. Trends Microbiol 13: 389397.
  • Lewis, K. (2010) Persister cells. Annu Rev Microbiol 64: 357372.
  • Liberati, N.T., Urbach, J.M., Miyata, S., Lee, D.G., Drenkard, E., Wu, G., et al. (2006) An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci USA 103: 28332838.
  • Mavrodi, D.V., Bonsall, R.F., Delaney, S.M., Soule, M.J., Phillips, G., and Thomashow, L.S. (2001) Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J Bacteriol 183: 64546465.
  • Mavrodi, D.V., Blankenfeldt, W., and Thomashow, L.S. (2006) Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. Annu Rev Phytopathol 44: 417445.
  • Mavrodi, D.V., Parejko, J.A., Mavrodi, O.V., Kwak, Y.-S., Weller, D.M., Blankenfeldt, W., et al. (2013) Recent insights into the diversity, frequency and ecological roles of phenazines in fluorescent Pseudomonas spp. Environ Microbiol 15: 675686.
  • Möker, N., Dean, C.R., and Tao, J. (2010) Pseudomonas aeruginosa increases formation of multidrug-tolerant persister cells in response to quorum-sensing signaling molecules. J Bacteriol 192: 19461955.
  • Nguyen, D., Joshi-Datar, A., Lepine, F., Bauerle, E., Olakanmi, O., Beer, K., et al. (2011) Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science 334: 982986.
  • Novo, D., Perlmutter, N.G., Hunt, R.H., and Shapiro, H.M. (1999) Accurate flow cytometric membrane potential measurement in bacteria using diethyloxacarbocyanine and a ratiometric technique. Cytometry 35: 5563.
  • Palmer, K., Mashburn, L., and Singh, P. (2005) Cystic fibrosis sputum supports growth and cues key aspects of Pseudomonas aeruginosa physiology. J Bacteriol 187: 52675277.
  • Palmer, K.L., Aye, L.M., and Whiteley, M. (2007) Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum. J Bacteriol 189: 80798087.
  • Price-Whelan, A., Dietrich, L.E.P., and Newman, D.K. (2006) Rethinking “secondary” metabolism: physiological roles for phenazine antibiotics. Nature Chem Biol 2: 7178.
  • Price-Whelan, A., Dietrich, L.E.P., and Newman, D.K. (2007) Pyocyanin alters redox homeostasis and carbon flux through central metabolic pathways in Pseudomonas aeruginosa PA14. J Bacteriol 189: 63726381.
  • Reeve, C.A., Amy, P.S., and Matin, A. (1984) Role of protein synthesis in the survival of carbon-starved Escherichia coli K-12. J Bacteriol 160: 10411046.
  • San, K.-Y., Bennett, G.N., Berríos-Rivera, S.J., Vadali, R.V., Yang, Y.-T., Horton, E., et al. (2002) Metabolic engineering through cofactor manipulation and its effects on metabolic flux redistribution in Escherichia coli. Metab Eng 4: 182192.
  • Schreiber, K., Boes, N., Eschbach, M., Jaensch, L., Wehland, J., Bjarnsholt, T., et al. (2006) Anaerobic survival of Pseudomonas aeruginosa by pyruvate fermentation requires an Usp-type stress protein. J Bacteriol 188: 659668.
  • Sebald, W., Machleidt, W., and Wachter, E. (1980) N,N′-dicyclohexylcarbodiimide binds specifically to a single glutamyl residue of the proteolipid subunit of the mitochondrial adenosinetriphosphatases from Neurospora crassa and Saccharomyces cerevisiae. Proc Natl Acad Sci USA 77: 785789.
  • Shanks, R.M.Q., Caiazza, N.C., Hinsa, S.M., Toutain, C.M., and O'Toole, G.A. (2006) Saccharomyces cerevisiae-based molecular tool kit for manipulation of genes from gram-negative bacteria. Appl Environ Microbiol 72: 50275036.
  • Shapiro, H.M., and Nebe-von-Caron, G. (2004) Multiparameter flow cytometry of bacteria. Methods Mol Biol 263: 3344.
  • Singh, P.K., Schaefer, A.L., Parsek, M.R., Moninger, T.O., Welsh, M.J., and Greenberg, E.P. (2000) Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407: 762764.
  • Stover, C.K., Pham, X.Q., Erwin, A.L., Mizoguchi, S.D., Warrener, P., Hickey, M.J., et al. (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406: 959964.
  • Strahl, H., and Hamoen, L.W. (2010) Membrane potential is important for bacterial cell division. Proc Natl Acad Sci USA 107: 1228112286.
  • Sullivan, N.L., Tzeranis, D.S., Wang, Y., So, P.T.C., and Newman, D.K. (2011) Quantifying the dynamics of bacterial secondary metabolites by spectral multiphoton microscopy. ACS Chem Biol 6: 893899.
  • Van Alst, N.E., Sherrill, L.A., Iglewski, B.H., and Haidaris, C.G. (2009) Compensatory periplasmic nitrate reductase activity supports anaerobic growth of Pseudomonas aeruginosa PAO1 in the absence of membrane nitrate reductase. Can J Microbiol 55: 11331144.
  • Vander Wauven, C., Piérard, A., Kley-Raymann, M., and Haas, D. (1984) Pseudomonas aeruginosa mutants affected in anaerobic growth on arginine: evidence for a four-gene cluster encoding the arginine deiminase pathway. J Bacteriol 160: 928934.
  • Wang, Y., and Newman, D.K. (2008) Redox reactions of phenazine antibiotics with ferric (hydr)oxides and molecular oxygen. Environ Sci Technol 42: 23802386.
  • Wang, Y., Kern, S.E., and Newman, D.K. (2010) Endogenous phenazine antibiotics promote anaerobic survival of Pseudomonas aeruginosa via extracellular electron transfer. J Bacteriol 192: 365369.
  • Wang, Y., Wilks, J.C., Danhorn, T., Ramos, I., Croal, L., and Newman, D.K. (2011) Phenazine-1-carboxylic acid promotes bacterial biofilm development via ferrous iron acquisition. J Bacteriol 193: 36063617.
  • Weichart, D., Querfurth, N., Dreger, M., and Hengge-Aronis, R. (2003) Global role for ClpP-containing proteases in stationary-phase adaptation of Escherichia coli. J Bacteriol 185: 115125.
  • Widdel, F., Kohring, G.-W., and Mayer, F. (1983) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. Arch Microbiol 134: 286294.
  • Williamson, K.S., Richards, L.A., Perez-Osorio, A.C., Pitts, B., McInnerney, K., Stewart, P.S., et al. (2012) Heterogeneity in Pseudomonas aeruginosa biofilms includes expression of ribosome hibernation factors in the antibiotic-tolerant subpopulation and hypoxia-induced stress response in the metabolically active population. J Bacteriol 194: 20622073.
  • Wilson, R., Sykes, D.A., Watson, D., Rutman, A., Taylor, G.W., and Cole, P.J. (1988) Measurement of Pseudomonas aeruginosa phenazine pigments in sputum and assessment of their contribution to sputum sol toxicity for respiratory epithelium. Infect Immun 56: 25152517.
  • Worlitzsch, D., Tarran, R., Ulrich, M., Schwab, U., Cekici, A., Meyer, K.C., et al. (2002) Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest 109: 317325.