SEARCH

SEARCH BY CITATION

References

  • Adams, D.W., and Errington, J. (2009) Bacterial cell division: assembly, maintenance and disassembly of the Z ring. Nat Rev Microbiol 7: 642653.
  • Alloing, G., Granadel, C., Morrison, D.A., and Claverys, J.-P. (1996) Competence pheromone, oligopeptide permease, and induction of competence in Streptococcus pneumoniae. Mol Microbiol 21: 471478.
  • Avery, O.T., MacLeod, C.M., and McCarty, M. (1944) Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J Exp Med 79: 137158.
  • Barendt, S.M., Land, A.D., Sham, L.T., Ng, W.L., Tsui, H.C., Arnold, R.J., and Winkler, M.E. (2009) Influences of capsule on cell shape and chain formation of wild-type and pcsB mutants of serotype 2 Streptococcus pneumoniae. J Bacteriol 191: 30243040.
  • Barendt, S.M., Sham, L.T., and Winkler, M.E. (2011) Characterization of mutants deficient in the L,D-carboxypeptidase (DacB) and WalRK (VicRK) regulon, involved in peptidoglycan maturation of Streptococcus pneumoniae serotype 2 strain D39. J Bacteriol 193: 22902300.
  • Beilharz, K., Novakova, L., Fadda, D., Branny, P., Massidda, O., and Veening, J.W. (2012) Control of cell division in Streptococcus pneumoniae by the conserved Ser/Thr protein kinase StkP. Proc Natl Acad Sci USA 109: E905E913.
  • Berg, K.H., Stamsas, G.A., Straume, D., and Havarstein, L.S. (2013) The effect of low Pbp2b levels on cell morphology and peptidoglycan composition in Streptococcus pneumoniae R6. J Bacteriol 195: 43424354.
  • Cassone, M., Gagne, A.L., Spruce, L.A., Seeholzer, S.H., and Sebert, M.E. (2012) The HtrA protease from Streptococcus pneumoniae digests both denatured proteins and the competence-stimulating peptide. J Biol Chem 287: 3844938459.
  • Clausen, T., Kaiser, M., Huber, R., and Ehrmann, M. (2011) HTRA proteases: regulated proteolysis in protein quality control. Nat Rev Mol Cell Biol 12: 152162.
  • Daniel, R.A., and Errington, J. (2003) Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell. Cell 13: 767776.
  • Den Blaauwen, T., Aarsman, M.E., Vischer, N.O., and Nanninga, N. (2003) Penicillin-binding protein PBP2 of Escherichia coli localizes preferentially in the lateral wall and at mid-cell in comparison with the old cell pole. Mol Microbiol 47: 539547.
  • Den Blaauwen, T., De Pedro, M.A., Nguyen-Disteche, M., and Ayala, J.A. (2008) Morphogenesis of rod-shaped sacculi. FEMS Microbiol Rev 32: 321344.
  • Eberhardt, A., Wu, L.J., Errington, J., Vollmer, W., and Veening, J.W. (2009) Cellular localization of choline-utilization proteins in Streptococcus pneumoniae using novel fluorescent reporter systems. Mol Microbiol 74: 395408.
  • Egan, A.J., and Vollmer, W. (2013) The physiology of bacterial cell division. Ann N Y Acad Sci 1277: 828.
  • Fleurie, A., Cluzel, C., Guiral, S., Freton, C., Galisson, F., Zanella-Cleon, I., et al. (2012) Mutational dissection of the S/T-kinase StkP reveals crucial roles in cell division of Streptococcus pneumoniae. Mol Microbiol 83: 746758.
  • Giefing, C., Jelencsics, K.E., Gelbmann, D., Senn, B.M., and Nagy, E. (2010) The pneumococcal eukaryotic-type serine/threonine protein kinase StkP co-localizes with the cell division apparatus and interacts with FtsZ in vitro. Microbiology 156: 16971707.
  • Goffin, C., and Ghuysen, J.-M. (1998) Multimodular penicillin-binding proteins: an enigmatic family of orthologs and paralogs. Microbiol Mol Biol Rev 62: 10791.
  • Gordon, E., Mouz, N., Duee, E., and Dideberg, O. (2000) The crystal structure of the penicillin-binding protein 2x from Streptococcus pneumoniae and its acyl-enzyme form: implication in drug resistance. J Mol Biol 299: 477485.
  • Hakenbeck, R., Tornette, S., and Adkinson, N.F. (1987) Interaction of non-lytic β-lactams with penicillin-binding proteins in Streptococcus pneumoniae. J Gen Microbiol 133: 755760.
  • Hakenbeck, R., Briese, T., Chalkley, L., Ellerbrok, H., Kalliokoski, R., Latorre, C., et al. (1991) Variability of penicillin-binding proteins from penicillin-sensitive Streptococcus pneumoniae. J Infect Dis 164: 307312.
  • Hakenbeck, R., Ellerbrok, H., Martin, C., Morelli, G., Schuster, C., Severin, A., and Tomasz, A. (1993) Penicillin-binding protein 1a and 3 in Streptococcus pneumoniae: what are essential PBP's. In Bacterial Growth and Lysis Metabolism and Structure of the Bacterial Sacculus. De Pedro, M.A. , Höltje, J.-V. , and Löffelhardt, W. (eds). New York and London: Plenum Press, pp. 335340.
  • Hakenbeck, R., Brückner, R., Denapaite, D., and Maurer, P. (2012) Molecular mechanism of beta-lactam resistance in Streptococcus pneumoniae. Future Microbiol 7: 395410.
  • Halfmann, A., Hakenbeck, R., and Brückner, R. (2007a) A new integrative reporter plasmid for Streptococcus pneumoniae. FEMS Microbiol Lett 268: 217224.
  • Halfmann, A., Kovács, M., Hakenbeck, R., and Brückner, R. (2007b) Identification of the genes directly controlled by the response regulator CiaR in Streptococcus pneumoniae: five out of fifteen promoters drive expression of small noncoding RNAs. Mol Microbiol 66: 110126.
  • Halfmann, A., Schnorpfeil, A., Müller, M., Marx, P., Günzler, U., Hakenbeck, R., and Brückner, R. (2011) Activity of the two-component regulatory system CiaRH in Streptococcus pneumoniae R6. J Mol Microbiol Biotechnol 20: 96104.
  • Hasper, H.E., Kramer, N.E., Smith, J.L., Hillman, J.D., Zachariah, C., Kuipers, O.P., et al. (2006) An alternative bactericidal mechanism of action for lantibiotic peptides that target lipid II. Science 313: 16361637.
  • Higgins, M.L., and Shockman, G.D. (1970) Model for cell wall growth of Streptococcus faecalis. J Bacteriol 101: 643648.
  • Hoskins, J., Matsushima, P., Mullen, D.L., Tang, J., Zhao, G., Meier, T., I, et al. (1999) Gene disruption studies of penicillin-binding proteins 1a, 1b and 2a in Streptococcus pneumoniae. J Bacteriol 181: 65526555.
  • Hyyrylainen, H.L., Bolhuis, A., Darmon, E., Muukkonen, L., Koski, P., Vitikainen, M., et al. (2001) A novel two-component regulatory system in Bacillus subtilis for the survival of severe secretion stress. Mol Microbiol 41: 11591172.
  • de Jong, I.G., Beilharz, K., Kuipers, O.P., and Veening, J.W. (2011) Live Cell imaging of Bacillus subtilis and Streptococcus pneumoniae using automated time-lapse microscopy. J Vis Exp 53: e3145.
  • Kell, C.M., Sharma, U.K., Dowson, C.G., Town, C., Balganesh, T.S., and Spratt, B.G. (1993) Deletion analysis of the essentiality of penicillin-binding proteins 1A, 2B and 2X of Streptococcus pneumoniae. FEMS Microbiol Lett 106: 171175.
  • Kochan, T.J., and Dawid, S. (2013) The HtrA protease of Streptococcus pneumoniae controls density-dependent stimulation of the bacteriocin blp locus via disruption of pheromone secretion. J Bacteriol 195: 15611572.
  • Lacks, S., and Hotchkiss, R.D. (1960) A study of the genetic material determining an enzyme activity in pneumococcus. Biochim Biophys Acta 39: 508517.
  • Lages, M.C.A., Beilharz, K., Angeles, D.M., Veening, J.-W., and Scheffers, D.-J. (2013) The localization of key Bacillus subtilis penicillin binding proteins during cell growth is determined by substrate availability. Environ Microbiol 15: 32723281.
  • Laible, G., and Hakenbeck, R. (1987) Penicillin-binding proteins in β-lactam-resistant laboratory mutants of Streptococcus pneumoniae. Mol Microbiol 1: 355363.
  • Laible, G., Hakenbeck, R., Sicard, M.A., Joris, B., and Ghuysen, J.-M. (1989) Nucleotide sequences of the pbpX genes encoding the penicillin-binding protein 2x from Streptococcus pneumoniae R6 and a cefotaxime-resistant mutant, C506. Mol Microbiol 3: 13371348.
  • Land, A.D., and Winkler, M.E. (2011) The requirement for pneumococcal MreC and MreD is relieved by inactivation of the gene encoding PBP1a. J Bacteriol 193: 41664179.
  • Land, A.D., Tsui, H.C., Kocaoglu, O., Vella, S.A., Shaw, S.L., Keen, S.K., et al. (2013) Requirement of essential Pbp2x and GpsB for septal ring closure in Streptococcus pneumoniae D39. Mol Microbiol 90: 939955.
  • Lanie, J.A., Ng, W.L., Kazmierczak, K.M., Andrzejewski, T.M., Davidsen, T.M., Wayne, K.J., et al. (2007) Genome sequence of Avery's virulent serotype 2 strain D39 of Streptococcus pneumoniae and comparison with that of unencapsulated laboratory strain R6. J Bacteriol 297: 503512.
  • LeBlanc, D.J., Lee, L.N., and Inamine, J.M. (1991) Cloning and nucleotide base sequence analysis of a spectinomycin adenyltransferase AAD(9) determinant from Enterococcus faecalis. Antimicrob Agents Chemother 35: 18041810.
  • Lleo, M.M., Canepari, P., and Satta, G. (1990) Bacterial cell shape regulation: testing of additional predictions unique to the two-competing-sites model for peptidoglycan assembly and isolation of conditional rod-shaped mutants from some wild-type cocci. J Bacteriol 172: 37583771.
  • Lovering, A.L., Safadi, S.S., and Strynadka, N.C. (2012) Structural perspective of peptidoglycan biosynthesis and assembly. Annu Rev Biochem 81: 451478.
  • Lutkenhaus, J., Pichoff, S., and Du, S. (2012) Bacterial cytokinesis: from Z ring to divisome. Cytoskeleton 69: 778790.
  • Maestro, B., Novaková, L., Hesek, D., Lee, M., Leyva, E., Mobashery, S., et al. (2011) Recognition of peptidoglycan and β-lactam antibiotics by the extracellular domain of the Ser/Thr protein kinase StkP from Streptococcus pneumoniae. FEBS Lett 585: 357363.
  • Mascher, T., Heintz, M., Zähner, D., Merai, M., and Hakenbeck, R. (2006) The CiaRH system of Streptococcus pneumoniae prevents lysis during stress induced by treatment with cell wall inhibitors and mutations in pbp2x involved in beta-lactam resistance. J Bacteriol 188: 19591968.
  • Mascher, T., Zähner, D., Merai, M., Balmelle, N., de Saizieu, A.B., and Hakenbeck, R. (2003) The Streptococcus pneumoniae cia regulon: CiaR target sites and transcription profile analysis. J Bacteriol 185: 6070.
  • Massidda, O., Novakova, L., and Vollmer, W. (2013) From models to pathogens: how much have we learned about Streptococcus pneumoniae cell division? Environ Microbiol 15: 31333157.
  • Maurer, P., Koch, B., Zerfaß, I., Krauß, J., van der Linden, M., Frère, J.-M., et al. (2008) Penicillin-binding protein 2x of Streptococcus pneumoniae: three new mutational pathways for remodelling an essential enzyme into a resistance determinant. J Mol Biol 376: 14031416.
  • Maurer, P., Todorova, K., Sauerbier, J., and Hakenbeck, R. (2012) The C-terminal PASTA-domains of Streptococcus pneumoniae PBP2x are important for beta-lactam binding. Microb Drug Resist 18: 314321.
  • Mir, M., Asong, J., Li, X., Cardot, J., Boons, G.J., and Husson, R.N. (2011) The extracytoplasmic domain of the Mycobacterium tuberculosis Ser/Thr kinase PknB binds specific muropeptides and is required for PknB localization. PLoS Pathog 7: e1002182.
  • Morlot, C., Zapun, A., Dideberg, O., and Vernet, T. (2003) Growth and division of Streptococcus pneumoniae: localization of the high molecular weight penicillin-binding proteins during the cell cycle. Mol Microbiol 50: 845855.
  • Morlot, C., Noirclerc-Savoye, M., Zapun, A., Dideberg, O., and Vernet, T. (2004) The D,D-carboxypeptidase PBP3 organizes the division process of Streptococcus pneumoniae. Mol Microbiol 51: 16411648.
  • Morlot, C., Bayle, L., Jacq, M., Fleurie, A., Tourcier, G., Galisson, F., et al. (2013) Interaction of penicillin-binding protein 2x and Ser/Thr protein kinase StkP, two key players in Streptococcus pneumoniae R6 morphogenesis. Mol Microbiol 90: 88102.
  • Noone, D., Botella, E., Butler, C., Hansen, A., Jende, I., and Devine, K.M. (2012) Signal perception by the secretion stress-responsive CssRS two-component system in Bacillus subtilis. J Bacteriol 194: 18001814.
  • Ottolenghi, E., and Hotchkiss, R.D. (1962) Release of genetic transforming agent from pneumococcal cultures during growth and disintegration. J Exp Med 116: 491519.
  • Paik, J., Kern, I., Lurz, R., and Hakenbeck, R. (1999) Mutational analysis of the Streptococcus pneumoniae bimodular class A penicillin-binding proteins. J Bacteriol 181: 38523856.
  • Paracuellos, P., Ballandras, A., Robert, X., Kahn, R., Herve, M., Mengin-Lecreulx, D., et al. (2010) The extended conformation of the 2.9-A crystal structure of the three-PASTA domain of a Ser/Thr kinase from the human pathogen Staphylococcus aureus. J Mol Biol 404: 847858.
  • Pares, S., Mouz, N., Pétillot, Y., Hakenbeck, R., and Dideberg, O. (1996) X-ray structure of Streptococcus pneumoniae PBP2x, a primary penicillin target enzyme. Nat Struct Biol 3: 284289.
  • Perez-Nunez, D., Briandet, R., David, B., Gautier, C., Renault, P., Hallet, B., et al. (2011) A new morphogenesis pathway in bacteria: unbalanced activity of cell wall synthesis machineries leads to coccus-to-rod transition and filamentation in ovococci. Mol Microbiol 79: 759771.
  • Salles, C., Creancier, L., Claverys, J.P., and Méjean, V. (1992) The high level streptomycin resistance gene from Streptococcus pneumoniae is a homologue of the ribosomal protein S12 gene from Escherichia coli. Nucleic Acids Res 20: 6103.
  • Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual Plainview. New York: Cold Spring Harbor Laboratory Press.
  • Schnorpfeil, A., Kranz, M., Kovacs, M., Kirsch, C., Gartmann, J., Brunner, I., et al. (2013) Target evaluation of the non-coding csRNAs reveals a link of the two-component regulatory system CiaRH to competence control in Streptococcus pneumoniae R6. Mol Microbiol 89: 334349.
  • Scholz, O., Thiel, A., Hillen, W., and Niederweis, M. (2000) Quantitative analysis of gene expression with an improved green fluorescent protein. Eur J Biochem 267: 15651570.
  • Severin, A., Schuster, C., Hakenbeck, R., and Tomasz, A. (1992) Altered murein composition in a DD-carboxypeptidase mutant of Streptococcus pneumoniae. J Bacteriol 174: 51255155.
  • Shah, I.M., Laaberki, M.H., Popham, D.L., and Dworkin, J. (2008) A eukaryotic-like Ser/Thr kinase signals bacteria to exit dormancy in response to peptidoglycan fragments. Cell 135: 486496.
  • Sham, L.T., Tsui, H.C., Land, A.D., Barendt, S.M., and Winkler, M.E. (2012) Recent advances in pneumococcal peptidoglycan biosynthesis suggest new vaccine and antimicrobial targets. Curr Opin Microbiol 15: 194203.
  • Smith, M.D., and Guild, W.R. (1979) A plasmid in Streptococcus pneumoniae. J Bacteriol 137: 735739.
  • Squeglia, F., Marchetti, R., Ruggiero, A., Lanzetta, R., Marasco, D., Dworkin, J., et al. (2011) Chemical basis of peptidoglycan discrimination by PrkC, a key kinase involved in bacterial resuscitation from dormancy. J Am Chem Soc 133: 2067620679.
  • Sun, S.X., and Jiang, H. (2011) Physics of bacterial morphogenesis. Microbiol Mol Biol Rev 75: 543565.
  • Sung, C.K., Li, H., Claverys, J.P., and Morrison, D.A. (2001) An rpsL cassette, janus, for gene replacement through negative selection in Streptococcus pneumoniae. Appl Environ Microbiol 67: 51905196.
  • Thanbichler, M. (2010) Synchronization of chromosome dynamics and cell division in bacteria. Cold Spring Harb Perspect Biol 2: a000331.
  • Tsui, H.C., Keen, S.K., Sham, L.T., Wayne, K.J., and Winkler, M.E. (2011) Dynamic distribution of the SecA and SecY translocase subunits and septal localization of the HtrA surface chaperone/protease during Streptococcus pneumoniae D39 cell division. MBio 2. pii: e00202-11. doi: 10.1128/mBio.00202-11.
  • Typas, A., Banzhaf, M., Gross, C.A., and Vollmer, W. (2012) From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat Rev Microbiol 10: 123136.
  • Weidel, W., and Pelzer, H. (1964) Bagshaped macromolecules – a new outlook on bacterial cell walls. Adv Enzymol Relat Areas Mol Biol 26: 193232.
  • Weiss, D.S., Pogliano, K., Carson, M., Guzman, L.M., Fraipont, C., Nguyen-Disteche, M., et al. (1997) Localization of the Escherichia coli cell division protein Ftsl (PBP3) to the division site and cell pole. Mol Microbiol 25: 671681.
  • White, C.L., and Gober, J.W. (2012) MreB: pilot or passenger of cell wall synthesis? Trends Microbiol 20: 7479.
  • Williamson, R., Hakenbeck, R., and Tomasz, A. (1980) In vivo interaction of β-lactam antibiotics with the penicillin-binding proteins of Streptococcus pneumoniae. Antimicrob Agents Chemother 18: 629637.
  • Yanish-Perron, C., Vieira, J., and Messing, J. (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequence of the M13mp18 and pCU19 vectors. Gene 33: 103119.
  • Yeats, C., Finn, R.D., and Bateman, A. (2002) The PASTA domain: a beta-lactam-binding domain. Trends Biochem Sci 27: 438.
  • Zapun, A., Contreras-Martel, C., and Vernet, T. (2008a) Penicillin-binding proteins and β-lactam resistance. FEMS Microbiol Rev 32: 361385.
  • Zapun, A., Vernet, T., and Pinho, M.G. (2008b) The different shapes of cocci. FEMS Microbiol Rev 32: 345360.
  • Zerfaß, I. PBP2x-mutationen in Streptococcus pneumoniae: auswirkungen auf β-lactam-resistenz und zellphysiologie. 2011. University of Kaiserslautern.
  • Zerfaß, I., Hakenbeck, R., and Denapaite, D. (2009) An important site in PBP2x of penicillin-resistant clinical isolates of Streptococcus pneumoniae: mutational analysis of Thr338. Antimicrob Agents Chemother 53: 11071115.