SEARCH

SEARCH BY CITATION

References

  • 1
    Backlund EO, Granberg PO, Hamberger B, Knutsson E, Mårtensson A, Sedvall G, Seiger A, Olson L. Transplantation of adrenal medullary tissue to striatum in parkinsonism. First clinical trials. J Neurosurg 1985; 62: 169173
  • 2
    Lindvall O, Backlund EO, Farde L, Sedvall G, Freedman R, Hoffer B, Nobin A, Seiger A, Olson L. Transplantation in Parkinson's disease: two cases of adrenal medullary grafts to the putamen. Ann Neurol 1987; 22: 457468
  • 3
    Lindvall O, Rehncrona S, Brundin P, Gustavii B, Astedt B, Widner H, Lindholm T, Björklund A, Leenders KL, Rothwell JC, Frackowiak R, Marsden D, Johnels B, Steg G, Freedman R, Hoffer BJ, Seiger A, Bygdeman M, Strömberg I, Olson L. Human fetal dopamine neurons grafted into the striatum in two patients with severe Parkinson's disease. A detailed account of methodology and a 6-month follow-up. Arch Neurol 1989; 46: 615631
  • 4
    Lindvall O, Rehncrona S, Gustavii B, Brundin P, Astedt B, Widner H, Lindholm T, Björklund A, Leenders KL, Rothwell JC, Frackowiak R, Marsden CD, Johnels B, Steg G, Freedman R, Hoffer BJ, Seiger L, Strömberg I, Bygdeman M, Olson L. Fetal dopamine-rich mesencephalic grafts in Parkinson's disease. Lancet 1988; 2: 14831484
  • 5
    Lindvall O, Björklund A. Transplantation strategies in the treatment of Parkinson's disease: experimental basis and clinical trials. Acta Neurol Scand Suppl 1989; 126: 197210
  • 6
    Giordana MT, Grifoni S, Votta B, Magistrello M, Vercellino M, Pellerino A, Navone R, Valentini C, Calvo A, Chiò A. Neuropathology of olfactory ensheathing cell transplantation into the brain of two amyotrophic lateral sclerosis (ALS) patients. Brain Pathol 2010; 20: 730737
  • 7
    Huang H, Chen L, Xi H, Wang H, Zhang J, Zhang F, Liu Y. Fetal olfactory ensheathing cells transplantation in amyotrophic lateral sclerosis patients: a controlled pilot study. Clin Transplant 2008; 22: 710718
  • 8
    Mazzini L, Ferrero I, Luparello V, Rustichelli D, Gunetti M, Mareschi K, Testa L, Stecco A, Tarletti R, Miglioretti M, Fava E, Nasuelli N, Cisari C, Massara M, Vercelli R, Oggioni GD, Carriero A, Cantello R, Monaco F, Fagioli F. Mesenchymal stem cell transplantation in amyotrophic lateral sclerosis: a Phase I clinical trial. Exp Neurol 2010; 223: 229237
  • 9
    Mazzini L, Mareschi K, Ferrero I, Miglioretti M, Stecco A, Servo S, Carriero A, Monaco F, Fagioli F. Mesenchymal stromal cell transplantation in amyotrophic lateral sclerosis: a long-term safety study. Cytotherapy 2012; 14: 5660
  • 10
    Uccelli A, Mancardi G. Stem cell transplantation in multiple sclerosis. Curr Opin Neurol 2010; 23: 218225
  • 11
    Rice CM, Kemp K, Wilkins A, Scolding NJ. Cell therapy for multiple sclerosis: an evolving concept with implications for other neurodegenerative diseases. Lancet 2013; 382: 12041213
  • 12
    Kondziolka D, Wechsler L, Gebel J, DeCesare S, Elder E, Meltzer CC. Neuronal transplantation for motor stroke: from the laboratory to the clinic. Phys Med Rehabil Clin N Am 2003; 14: S153160, xi
  • 13
    Savitz SI, Dinsmore J, Wu J, Henderson GV, Stieg P, Caplan LR. Neurotransplantation of fetal porcine cells in patients with basal ganglia infarcts: a preliminary safety and feasibility study. Cerebrovasc Dis 2005; 20: 101107
  • 14
    Féron F, Perry C, Cochrane J, Licina P, Nowitzke A, Urquhart S, Geraghty T, Mackay-Sim A. Autologous olfactory ensheathing cell transplantation in human spinal cord injury. Brain 2005; 128: 29512960
  • 15
    Ramón-Cueto A, Santos-Benito FF. Cell therapy to repair injured spinal cords: olfactory ensheathing glia transplantation. Restor Neurol Neurosci 2001; 19: 149156
  • 16
    Kopyov OV, Jacques S, Lieberman A, Duma CM, Eagle KS. Safety of intrastriatal neurotransplantation for Huntington's disease patients. Exp Neurol 1998; 149: 97108
  • 17
    Hauser RA, Furtado S, Cimino CR, Delgado H, Eichler S, Schwartz S, Scott D, Nauert GM, Soety E, Sossi V, Holt DA, Sanberg PR, Stoessl AJ, Freeman TB. Bilateral human fetal striatal transplantation in Huntington's disease. Neurology 2002; 58: 687695
  • 18
    Bachoud-Lévi A, Bourdet C, Brugières P, Nguyen JP, Grandmougin T, Haddad B, Jény R, Bartolomeo P, Boissé MF, Barba GD, Degos JD, Ergis AM, Lefaucheur JP, Lisovoski F, Pailhous E, Rémy P, Palfi S, Defer GL, Cesaro P, Hantraye P, Peschanski M. Safety and tolerability assessment of intrastriatal neural allografts in five patients with Huntington's disease. Exp Neurol 2000; 161: 194202
  • 19
    Rosser AE, Barker RA, Harrower T, Watts C, Farrington M, Ho AK, Burnstein RM, Menon DK, Gillard JH, Pickard J, Dunnett SB, NEST-UK. Unilateral transplantation of human primary fetal tissue in four patients with Huntington's disease: NEST-UK safety report ISRCTN no. 36 485 475. J Neurol Neurosurg Psychiatry 2002; 73: 678685
  • 20
    Reuter I, Tai YF, Pavese N, Chaudhuri KR, Mason S, Polkey CE, Clough C, Brooks DJ, Barker RA, Piccini P. Long-term clinical and positron emission tomography outcome of fetal striatal transplantation in Huntington's disease. J Neurol Neurosurg Psychiatry 2008; 79: 948951
  • 21
    Gallina P, Paganini M, Lombardini L, Mascalchi M, Porfirio B, Gadda D, Marini M, Pinzani P, Salvianti F, Crescioli C, Bucciantini S, Mechi C, Sarchielli E, Romoli AM, Bertini E, Urbani S, Bartolozzi B, De Cristofaro MT, Piacentini S, Saccardi R, Pupi A, Vannelli GB, Di Lorenzo N. Human striatal neuroblasts develop and build a striatal-like structure into the brain of Huntington's disease patients after transplantation. Exp Neurol 2010; 222: 3041
  • 22
    Capetian P, Knoth R, Maciaczyk J, Pantazis G, Ditter M, Bokla L, Landwehrmeyer GB, Volk B, Nikkhah G. Histological findings on fetal striatal grafts in a Huntington's disease patient early after transplantation. Neuroscience 2009; 160: 661675
  • 23
    Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EPJ. Neuropathological classification of Huntington's disease. J Neuropathol Exp Neurol 1985; 44: 559577
  • 24
    Ross CA, Tabrizi SJ. Huntington's disease: from molecular pathogenesis to clinical treatment. Lancet Neurol 2011; 10: 8398
  • 25
    Li J-Y, Conforti L. Axonopathy in Huntington's disease. Exp Neurol 2013; 246: 6271
  • 26
    Lee CYD, Cantle JP, Yang XW. Genetic manipulations of mutant huntingtin in mice: new insights into HD pathogenesis. FEBS J 2013; 280: 43824394
  • 27
    Cardoso F. Huntington disease and other choreas. Neurol Clin 2009; 27: 719736, vi
  • 28
    Steffan JS, Kazantsev A, Spasic-Boskovic O, Greenwald M, Zhu YZ, Gohler H, Wanker EE, Bates GP, Housman DE, Thompson LM. The Huntington's disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc Natl Acad Sci USA 2000; 97: 67636768
  • 29
    Cisbani G, Cicchetti F. An in vitro perspective on the molecular mechanisms underlying mutant huntingtin protein toxicity. Cell Death Dis 2012; 3: e382
  • 30
    Zuccato C, Valenza M, Cattaneo E. Molecular mechanisms and potential therapeutical targets in Huntington's disease. Physiol Rev 2010; 90: 905981
  • 31
    Phillips W, Shannon KM, Barker RA. The current clinical management of Huntington's disease. Mov Disord 2008; 23: 14911504
  • 32
    Lindvall O, Brundin P, Widner H, Rehncrona S, Gustavii B, Frackowiak R, Leenders KL, Sawle G, Rothwell JC, Marsden CD. Grafts of fetal dopamine neurons survive and improve motor function in Parkinson's disease. Science 1990; 247: 574577
  • 33
    Lindvall O, Hagell P. Clinical observations after neural transplantation in Parkinson's disease. Prog Brain Res 2000; 127: 299320
  • 34
    Schmidt RH, Björklund A, Stenevi U. Intracerebral grafting of dissociated CNS tissue suspensions: a new approach for neuronal transplantation to deep brain sites. Brain Res 1981; 218: 347356
  • 35
    Deckel AW, Moran TH, Coyle JT, Sanberg PR, Robinson RG. Anatomical predictors of behavioral recovery following fetal striatal transplants. Brain Res 1986; 365: 249258
  • 36
    Isacson O, Dunnett SB, Björklund A. Graft-induced behavioral recovery in an animal model of Huntington disease. Proc Natl Acad Sci USA 1986; 83: 27282732
  • 37
    Isacson O, Brundin P, Kelly PA, Gage FH, Björklund A. Functional neuronal replacement by grafted striatal neurones in the ibotenic acid-lesioned rat striatum. Nature 1984; 311: 458460
  • 38
    Sanberg PR, Henault MA, Deckel AW. Locomotor hyperactivity: effects of multiple striatal transplants in an animal model of Huntington's disease. Pharmacol Biochem Behav 1986; 25: 297300
  • 39
    Wictorin K, Isacson O, Fischer W, Nothias F, Peschanski M, Björklund A. Connectivity of striatal grafts implanted into the ibotenic acid-lesioned striatum – I. Subcortical afferents. Neuroscience 1988; 27: 547562
  • 40
    Wictorin K, Clarke DJ, Bolam JP, Björklund A. Host corticostriatal fibres establish synaptic connections with grafted striatal neurons in the ibotenic acid lesioned striatum. Eur J Neurosci 1989; 1: 189195
  • 41
    Barker RA, Mason SL, Harrower TP, Swain RA, Ho AK, Sahakian BJ, Mathur R, Elneil S, Thornton S, Hurrelbrink C, Armstrong RJ, Tyers P, Smith E, Carpenter A, Piccini P, Tai YF, Brooks DJ, Pavese N, Watts C, Pickard JD, Rosser AE, Dunnett SB, the NEST-UK collaboration. The long-term safety and efficacy of bilateral transplantation of human fetal striatal tissue in patients with mild to moderate Huntington's disease. J Neurol Neurosurg Psychiatry 2013; 84: 657665
  • 42
    Freeman TB, Cicchetti F, Hauser RA, Deacon TW, Li XJ, Hersch SM, Nauert GM, Sanberg PR, Kordower JH, Saporta S, Isacson O. Transplanted fetal striatum in Huntington's disease: phenotypic development and lack of pathology. Proc Natl Acad Sci USA 2000; 97: 1387713882
  • 43
    Cicchetti F, Saporta S, Hauser RA, Parent M, Saint-Pierre M, Sanberg PR, Li XJ, Parker JR, Chu Y, Mufson EJ, Kordower JH, Freeman TB. Neural transplants in patients with Huntington's disease undergo disease-like neuronal degeneration. Proc Natl Acad Sci USA 2009; 106: 1248312488
  • 44
    Cisbani G, Freeman TB, Soulet D, Saint-Pierre M, Gagnon D, Parent M, Hauser RA, Barker RA, Cicchetti F. Striatal allografts in patients with Huntington's disease: impact of diminished astrocytes and vascularization on graft viability. Brain 2013; 136: 433443
  • 45
    Keene CD, Chang RC, Leverenz JB, Kopyov O, Perlman S, Hevner RF, Born DE, Bird TD, Montine TJ. A patient with Huntington's disease and long-surviving fetal neural transplants that developed mass lesions. Acta Neuropathol 2009; 117: 329338
  • 46
    Keene CD, Sonnen JA, Swanson PD, Kopyov O, Leverenz JB, Bird TD, Born DE, Bird TD, Montine TJ. Neural transplantation in Huntington disease: long-term grafts in two patients. Neurology 2007; 68: 20932098
  • 47
    Ross BD, Hoang TQ, Blüml S, Dubowitz D, Kopyov OV, Jacques DB, Lin A, Seymour K, Tan J. In vivo magnetic resonance spectroscopy of human fetal neural transplants. NMR Biomed 1999; 12: 221236
  • 48
    Bachoud-Lévi AC, Rémy P, Nguyen JP, Brugières P, Lefaucheur JP, Bourdet C, Baudic S, Gaura V, Maison P, Haddad B, Boissé MF, Grandmougin T, Jény R, Bartolomeo P, Dalla Barba G, Degos JD, Lisovoski F, Ergis AM, Pailhous E, Cesaro P, Hantraye P, Peschanski M. Motor and cognitive improvements in patients with Huntington's disease after neural transplantation. Lancet 2000; 356: 19751979
  • 49
    Gaura V, Bachoud-Lévi A-C, Ribeiro M-J, Nguyen J-P, Frouin V, Baudic S, Brugières P, Mangin J-F, Boissé M-F, Palfi S, Cesaro P, Samson Y, Hantraye P, Peschanski M, Remy P. Striatal neural grafting improves cortical metabolism in Huntington's disease patients. Brain 2004; 127: 6572
  • 50
    Bachoud-Lévi A-C, Gaura V, Brugières P, Lefaucheur J-P, Boissé M-F, Maison P, Baudic S, Ribeiro M-J, Bourdet C, Remy P, Cesaro P, Hantraye P, Peschanski M. Effect of fetal neural transplants in patients with Huntington's disease 6 years after surgery: a long-term follow-up study. Lancet Neurol 2006; 5: 303309
  • 51
    Krystkowiak P, Gaura V, Labalette M, Rialland A, Remy P, Peschanski M, Bachoud-Lévi A-C. Alloimmunisation to donor antigens and immune rejection following foetal neural grafts to the brain in patients with Huntington's disease. PLoS ONE 2007; 2: e166
  • 52
    Gallina P, Paganini M, Lombardini L, Saccardi R, Marini M, De Cristofaro MT, Pinzani P, Salvianti F, Crescioli C, Di Rita A, Bucciantini S, Mechi C, Sarchielli E, Moretti M, Piacentini S, Gritti G, Bosi A, Sorbi S, Orlandini G, Vannelli GB, Di Lorenzo N. Development of human striatal anlagen after transplantation in a patient with Huntington's disease. Exp Neurol 2008; 213: 241244
  • 53
    Beal MF, Hantraye P. Novel therapies in the search for a cure for Huntington's disease. Proc Natl Acad Sci USA 2001; 98: 34
  • 54
    Graybiel AM, Liu FC, Dunnett SB. Intrastriatal grafts derived from fetal striatal primordia. I. Phenotypy and modular organization. J Neurosci 1989; 9: 32503271
  • 55
    Hantraye P, Riche D, Maziere M, Isacson O. Intrastriatal transplantation of cross-species fetal striatal cells reduces abnormal movements in a primate model of Huntington disease. Proc Natl Acad Sci USA 1992; 89: 41874191
  • 56
    Kendall AL, Rayment FD, Torres EM, Baker HF, Ridley RM, Dunnett SB. Functional integration of striatal allografts in a primate model of Huntington's disease. Nat Med 1998; 4: 727729
  • 57
    Taylor-Robinson SD, Weeks RA, Bryant DJ, Sargentoni J, Marcus CD, Harding AE, Brooks DJ. Proton magnetic resonance spectroscopy in Huntington's disease: evidence in favour of the glutamate excitotoxic theory. Mov Disord 1996; 11: 167173
  • 58
    Levine MS, Cepeda C, André VM. Location, location, location: contrasting roles of synaptic and extrasynaptic NMDA receptors in Huntington's disease. Neuron 2010; 65: 145147
  • 59
    Cross AJ, Slater P, Reynolds GP. Reduced high-affinity glutamate uptake sites in the brains of patients with Huntington's disease. Neurosci Lett 1986; 67: 198202
  • 60
    Stack EC, Dedeoglu A, Smith KM, Cormier K, Kubilus JK, Bogdanov M, Matson WR, Yang L, Jenkins BG, Luthi-Carter R, Kowall NW, Hersch SM, Beal MF, Ferrante RJ. Neuroprotective effects of synaptic modulation in Huntington's disease R6/2 mice. J Neurosci 2007; 27: 1290812915
  • 61
    Raymond LA, André VM, Cepeda C, Gladding CM, Milnerwood AJ, Levine MS. Pathophysiology of Huntington's disease: time-dependent alterations in synaptic and receptor function. Neuroscience 2011; 198: 252273
  • 62
    André VM, Cepeda C, Levine MS. Dopamine and glutamate in Huntington's disease: a balancing act. CNS Neurosci Ther 2010; 16: 163178
  • 63
    Tang T-S, Chen X, Liu J, Bezprozvanny I. Dopaminergic signaling and striatal neurodegeneration in Huntington's disease. J Neurosci 2007; 27: 78997910
  • 64
    Scheckenbach KEL, Crespin S, Kwak BR, Chanson M. Connexin channel-dependent signaling pathways in inflammation. J Vasc Res 2011; 48: 91103
  • 65
    Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP. Neuropathological classification of Huntington's disease. J Neuropathol Exp Neurol 1985; 44: 559577
  • 66
    Vis JC, Nicholson LF, Faull RL, Evans WH, Severs NJ, Green CR. Connexin expression in Huntington's diseased human brain. Cell Biol Int 1998; 22: 837847
  • 67
    Shin J-Y, Fang Z-H, Yu Z-X, Wang C-E, Li S-H, Li X-J. Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity. J Cell Biol 2005; 171: 10011012
  • 68
    Hassel B, Tessler S, Faull RLM, Emson PC. Glutamate uptake is reduced in prefrontal cortex in Huntington's disease. Neurochem Res 2008; 33: 232237
  • 69
    Jäderstad J, Jäderstad LM, Herlenius E. Dynamic changes in connexin expression following engraftment of neural stem cells to striatal tissue. Exp Cell Res 2011; 317: 7081
  • 70
    Jäderstad J, Jäderstad LM, Li J, Chintawar S, Salto C, Pandolfo M, Ourednik V, Teng YD, Sidman RL, Arenas E, Snyder EY, Herlenius E. Communication via gap junctions underlies early functional and beneficial interactions between grafted neural stem cells and the host. Proc Natl Acad Sci USA 2010; 107: 51845189
  • 71
    Theis M, Giaume C. Connexin-based intercellular communication and astrocyte heterogeneity. Brain Res 2012; 1487: 8898
  • 72
    Eugenin EA, Basilio D, Sáez JC, Orellana JA, Raine CS, Bukauskas F, Bennett MVL, Berman JW. The role of gap junction channels during physiologic and pathologic conditions of the human central nervous system. J Neuroimmune Pharmacol 2012; 7: 499518
  • 73
    Maragakis NJ, Rothstein JD. Mechanisms of disease: astrocytes in neurodegenerative disease. Nat Clin Pract Neurol 2006; 2: 679689
  • 74
    Rose CR, Ransom BR. Regulation of intracellular sodium in cultured rat hippocampal neurones. J Physiol 1997; 499: 573587
  • 75
    Wallraff A, Köhling R, Heinemann U, Theis M, Willecke K, Steinhäuser C. The impact of astrocytic gap junctional coupling on potassium buffering in the hippocampus. J Neurosci 2006; 26: 54385447
  • 76
    Iadecola C, Nedergaard M. Glial regulation of the cerebral microvasculature. Nat Neurosci 2007; 10: 13691376
  • 77
    Tabernero A, Medina JM, Giaume C. Glucose metabolism and proliferation in glia: role of astrocytic gap junctions. J Neurochem 2006; 99: 10491061
  • 78
    Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH. Mechanisms underlying inflammation in neurodegeneration. Cell 2010; 140: 918934
  • 79
    Date I, Kawamura K, Nakashima H. Histological signs of immune reactions against allogeneic solid fetal neural grafts in the mouse cerebellum depend on the MHC locus. Exp Brain Res 1988; 73: 1522
  • 80
    Lawrence JM, Morris RJ, Wilson DJ, Raisman G. Mechanisms of allograft rejection in the rat brain. Neuroscience 1990; 37: 431462
  • 81
    Shinoda M, Hudson JL, Strömberg I, Hoffer BJ, Moorhead JW, Olson L. Microglial cell responses to fetal ventral mesencephalic tissue grafting and to active and adoptive immunizations. Exp Neurol 1996; 141: 173180
  • 82
    Cicchetti F, Soulet D, Freeman TB. Neuronal degeneration in striatal transplants and Huntington's disease: potential mechanisms and clinical implications. Brain 2011; 134: 641652
  • 83
    Garden GA, Möller T. Microglia biology in health and disease. J Neuroimmune Pharmacol 2006; 1: 127137
  • 84
    Simard AR, Soulet D, Gowing G, Julien J-P, Rivest S. Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer's disease. Neuron 2006; 49: 489502
  • 85
    Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005; 308: 13141318
  • 86
    Kordower JH, Rosenstein JM, Collier TJ, Burke MA, Chen EY, Li JM, Martel L, Levey AE, Mufson EJ, Freeman TB, Olanow CW. Functional fetal nigral grafts in a patient with Parkinson's disease: chemoanatomic, ultrastructural, and metabolic studies. J Comp Neurol 1996; 370: 203230
  • 87
    Brundin P, Karlsson J, Emgård M, Schierle GS, Hansson O, Petersén A, Castilho RF. Improving the survival of grafted dopaminergic neurons: a review over current approaches. Cell Transplant 2000; 9: 179195
  • 88
    Sortwell CE. Strategies for the augmentation of grafted dopamine neuron survival. Front Biosci 2003; 8: s522532
  • 89
    Terpstra BT, Collier TJ, Marchionini DM, Levine ND, Paumier KL, Sortwell CE. Increased cell suspension concentration augments the survival rate of grafted tyrosine hydroxylase immunoreactive neurons. J Neurosci Methods 2007; 166: 1319
  • 90
    Cisbani G, Saint-Pierre M, Cicchetti F. Single cell suspension methodology favours survival and vascularization of fetal striatal grafts in the YAC128 mouse model of Huntington's disease. Cell Transplant 2013. doi: 10.3727/096368913X668636 [Epub ahead of print]
  • 91
    Mayer E, Fawcett JW, Dunnett SB. Basic fibroblast growth factor promotes the survival of embryonic ventral mesencephalic dopaminergic neurons – II. Effects on nigral transplants in vivo. Neuroscience 1993; 56: 389398
  • 92
    Apostolides C, Sanford E, Hong M, Mendez I. Glial cell line-derived neurotrophic factor improves intrastriatal graft survival of stored dopaminergic cells. Neuroscience 1998; 83: 363372
  • 93
    Wang Y, Tien LT, Lapchak PA, Hoffer BJ. GDNF triggers fiber outgrowth of fetal ventral mesencephalic grafts from nigra to striatum in 6-OHDA-lesioned rats. Cell Tissue Res 1996; 286: 225233
  • 94
    Mendez I, Dagher A, Hong M, Hebb A, Gaudet P, Law A, Weerasinghe S, King D, Desrosiers J, Darvesh S, Acorn T, Robertson H. Enhancement of survival of stored dopaminergic cells and promotion of graft survival by exposure of human fetal nigral tissue to glial cell line-derived neurotrophic factor in patients with Parkinson's disease. Report of two cases and technical considerations. J Neurosurg 2000; 92: 863869
  • 95
    Zhou J, Bradford HF, Stern GM. Influence of BDNF on the expression of the dopaminergic phenotype of tissue used for brain transplants. Brain Res Dev Brain Res 1997; 100: 4351
  • 96
    Du X, Iacovitti L. Synergy between growth factors and transmitters required for catecholamine differentiation in brain neurons. J Neurosci 1995; 15: 54205427
  • 97
    Du X, Stull ND, Iacovitti L. Brain-derived neurotrophic factor works coordinately with partner molecules to initiate tyrosine hydroxylase expression in striatal neurons. Brain Res 1995; 680: 229233
  • 98
    Melo CV, Okumoto S, Gomes JR, Baptista MS, Bahr BA, Frommer WB, Duarte CB. Spatiotemporal resolution of BDNF neuroprotection against glutamate excitotoxicity in cultured hippocampal neurons. Neuroscience 2013; 237: 6686
  • 99
    Almeida CG, Tampellini D, Takahashi RH, Greengard P, Lin MT, Snyder EM, Gouras GK. Beta-amyloid accumulation in APP mutant neurons reduces PSD-95 and GluR1 in synapses. Neurobiol Dis 2005; 20: 187198
  • 100
    Bemelmans A-P, Husson I, Jaquet M, Mallet J, Kosofsky BE, Gressens P. Lentiviral-mediated gene transfer of brain-derived neurotrophic factor is neuroprotective in a mouse model of neonatal excitotoxic challenge. J Neurosci Res 2006; 83: 5060
  • 101
    Baquet ZC, Bickford PC, Jones KR. Brain-derived neurotrophic factor is required for the establishment of the proper number of dopaminergic neurons in the substantia nigra pars compacta. J Neurosci 2005; 25: 62516259
  • 102
    Altar CA, Cai N, Bliven T, Juhasz M, Conner JM, Acheson AL, Lindsay RM, Wiegand SJ. Anterograde transport of brain-derived neurotrophic factor and its role in the brain. Nature 1997; 389: 856860
  • 103
    Zuccato C, Cattaneo E. Brain-derived neurotrophic factor in neurodegenerative diseases. Nat Rev Neurol 2009; 5: 311322
  • 104
    Zuccato C, Cattaneo E. Role of brain-derived neurotrophic factor in Huntington's disease. Prog Neurobiol 2007; 81: 294330
  • 105
    Raju DV, Smith Y. Differential localization of vesicular glutamate transporters 1 and 2 in the rat striatum. The Basal Ganglia VIII 2005; 56: 601610
  • 106
    Zuccato C, Marullo M, Vitali B, Tarditi A, Mariotti C, Valenza M, Lahiri N, Wild EJ, Sassone J, Ciammola A, Bachoud-Lévi A-C, Tabrizi SJ, Di Donato S, Cattaneo E. Brain-derived neurotrophic factor in patients with Huntington's disease. PLoS ONE 2011; 6: e22966
  • 107
    Ferrer I, Goutan E, Marín C, Rey MJ, Ribalta T. Brain-derived neurotrophic factor in Huntington disease. Brain Res 2000; 866: 257261
  • 108
    Brundin P, Li JY, Holton JL, Lindvall O, Revesz T. Research in motion: the enigma of Parkinson's disease pathology spread. Nat Rev Neurosci 2008; 9: 741745
  • 109
    Freed CR, Greene PE, Breeze RE, Tsai WY, DuMouchel W, Kao R, Dillon S, Winfield H, Culver S, Trojanowski JQ, Eidelberg D, Fahn S. Transplantation of embryonic dopamine neurons for severe Parkinson's disease. N Engl J Med 2001; 344: 710719
  • 110
    Schumacher JM, Ellias SA, Palmer EP, Kott HS, Dinsmore J, Dempsey PK, Fischman AJ, Thomas C, Feldman RG, Kassissieh S, Raineri R, Manhart C, Penney D, Fink JS, Isacson O. Transplantation of embryonic porcine mesencephalic tissue in patients with PD. Neurology 2000; 54: 10421050
  • 111
    Deacon T, Schumacher J, Dinsmore J, Thomas C, Palmer P, Kott S, Edge A, Penney D, Kassissieh S, Dempsey P, Isacson O. Histological evidence of fetal pig neural cell survival after transplantation into a patient with Parkinson's disease. Nat Med 1997; 3: 350353
  • 112
    Lindsay RM, Raisman G. An autoradiographic study of neuronal development, vascularization and glial cell migration from hippocampal transplants labelled in intermediate explant culture. Neuroscience 1984; 12: 513530
  • 113
    Geny C, Naimi-Sadaoui S, Jény R, Belkadi AM, Juliano SL, Peschanski M. Long-term delayed vascularization of human neural transplants to the rat brain. J Neurosci 1994; 14: 75537562
  • 114
    Broadwell RD, Charlton HM, Ebert PS, Hickey WF, Shirazi Y, Villegas J, Wolf AL. Allografts of CNS tissue possess a blood-brain barrier. II. Angiogenesis in solid tissue and cell suspension grafts. Exp Neurol 1991; 112: 128
  • 115
    Nikkhah G, Cunningham MG, Jödicke A, Knappe U, Björklund A. Improved graft survival and striatal reinnervation by microtransplantation of fetal nigral cell suspensions in the rat Parkinson model. Brain Res 1994; 633: 133143
  • 116
    Scott DE. Fetal hypothalamic transplants: neuronal and neurovascular interrelationships. Neurosci Lett 1984; 51: 9398
  • 117
    Dore-Duffy P, Owen C, Balabanov R, Murphy S, Beaumont T, Rafols JA. Pericyte migration from the vascular wall in response to traumatic brain injury. Microvasc Res 2000; 60: 5569
  • 118
    Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW. Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson's disease. Nat Med 2008; 14: 504506
  • 119
    Li JY, Englund E, Holton JL, Soulet D, Hagell P, Lees AJ, Lashley T, Quinn NP, Rehncrona S, Björklund A, Widner H, Revesz T, Lindvall O, Brundin P. Lewy bodies in grafted neurons in subjects with Parkinson's disease suggest host-to-graft disease propagation. Nat Med 2008; 14: 501503
  • 120
    Soto C. Transmissible proteins: expanding the prion heresy. Cell 2012; 149: 968977
  • 121
    Brundin P, Melki R, Kopito R. Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat Rev Mol Cell Biol 2010; 11: 301307
  • 122
    Olanow CW, Prusiner SB. Is Parkinson's disease a prion disorder? Proc Natl Acad Sci USA 2009; 106: 1257112572
  • 123
    Guo JL, Covell DJ, Daniels JP, Iba M, Stieber A, Zhang B, Riddle DM, Kwong LK, Xu Y, Trojanowski JQ, Lee VM-Y. Distinct α-synuclein strains differentially promote tau inclusions in neurons. Cell 2013; 154: 103117
  • 124
    Recasens A, Dehay B, Bové J, Carballo-Carbajal I, Dovero S, Pérez A, Fernagut PO, Blesa J, Parent A, Perier C, Fariñas I, Obeso JA, Bezard E, Vila M. Lewy body extracts from Parkinson's disease brains trigger α-synuclein pathology and neurodegeneration in mice and monkeys. Ann Neurol 2013. doi: 10.1002/ana.24066 [Epub ahead of print]
  • 125
    de Calignon A, Polydoro M, Suarez-Calvet M, William C, Adamowicz DH, Kopeikina KJ, Pitstick R, Sahara N, Ashe KH, Carlson GA, Spires-Jones TL, Hyman BT. Propagation of tau pathology in a model of early Alzheimer's disease. Neuron 2012; 73: 685697.
  • 126
    Meyer-Luehmann M, Stalder M, Herzig MC, Kaeser SA, Kohler E, Pfeifer M, Boncristiano S, Mathews PM, Mercken M, Abramowski D, Staufenbiel M, Jucker M. Extracellular amyloid formation and associated pathology in neural grafts. Nat Neurosci 2003; 6: 370377.
  • 127
    Desplats P, Lee HJ, Bae EJ, Patrick C, Rockenstein E, Crews L, Spencer B, Masliah E, Lee SJ. Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc Natl Acad Sci USA 2009; 106: 1301013015
  • 128
    Hansen C, Angot E, Bergström A-L, Steiner JA, Pieri L, Paul G, Outeiro TF, Melki R, Kallunki P, Fog K, Li J-Y, Brundin P. Alpha-synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J Clin Invest 2011; 121: 715725
  • 129
    Luk KC, Kehm V, Carroll J, Zhang B, O'Brien P, Trojanowski JQ, Lee VM-Y. Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 2012; 338: 949953
  • 130
    Luk KC, Kehm VM, Zhang B, O'Brien P, Trojanowski JQ, Lee VM-Y. Intracerebral inoculation of pathological α-synuclein initiates a rapidly progressive neurodegenerative α-synucleinopathy in mice. J Exp Med 2012; 209: 975986
  • 131
    Angot E, Steiner JA, Lema Tomé CM, Ekström P, Mattsson B, Björklund A, Brundin P. Alpha-synuclein cell-to-cell transfer and seeding in grafted dopaminergic neurons in vivo. PLoS ONE 2012; 7: e39465
  • 132
    Goedert M, Clavaguera F, Tolnay M. The propagation of prion-like protein inclusions in neurodegenerative diseases. Trends Neurosci 2010; 33: 317325
  • 133
    Herrera F, Tenreiro S, Miller-Fleming L, Outeiro TF. Visualization of cell-to-cell transmission of mutant huntingtin oligomers. PLoS Curr 2011; 3: RRN1210
  • 134
    Costanzo M, Abounit S, Marzo L, Danckaert A, Chamoun Z, Roux P, Zurzolo C. Transfer of polyglutamine aggregates in neuronal cells occurs in tunneling nanotubes. J Cell Sci 2013; 126: 36783685
  • 135
    Ren P-H, Lauckner JE, Kachirskaia I, Heuser JE, Melki R, Kopito RR. Cytoplasmic penetration and persistent infection of mammalian cells by polyglutamine aggregates. Nat Cell Biol 2009; 11: 219225
  • 136
    Bradford J, Shin J-Y, Roberts M, Wang C-E, Sheng G, Li S, Li X-J. Mutant huntingtin in glial cells exacerbates neurological symptoms of Huntington disease mice. J Biol Chem 2010; 285: 1065310661
  • 137
    Bradford J, Shin J-Y, Roberts M, Wang C-E, Li X-J, Li S. Expression of mutant huntingtin in mouse brain astrocytes causes age-dependent neurological symptoms. Proc Natl Acad Sci USA 2009; 106: 2248022485
  • 138
    Dunnett SB. Neural tissue transplantation, repair, and rehabilitation. Handb Clin Neurol 2013; 110: 4359
  • 139
    Freeman TB, Cicchetti F, Bachoud-Lévi AC, Dunnett SB. Technical factors that influence neural transplant safety in Huntington's disease. Exp Neurol 2011; 227: 19
  • 140
    Olsson M, Björklund A, Campbell K. Early specification of striatal projection neurons and interneuronal subtypes in the lateral and medial ganglionic eminence. Neuroscience 1998; 84: 867876
  • 141
    Deacon TW, Pakzaban P, Isacson O. The lateral ganglionic eminence is the origin of cells committed to striatal phenotypes: neural transplantation and developmental evidence. Brain Res 1994; 668: 211219
  • 142
    Olsson M, Nikkhah G, Bentlage C, Björklund A. Forelimb akinesia in the rat Parkinson model: differential effects of dopamine agonists and nigral transplants as assessed by a new stepping test. J Neurosci 1995; 15: 38633875
  • 143
    Watts C, Brasted PJ, Dunnett SB. Embryonic donor age and dissection influences striatal graft development and functional integration in a rodent model of Huntington's disease. Exp Neurol 2000; 163: 8597
  • 144
    TransEUro consortium. Available at: http://www.transeuro.org.uk/pages/objectives.html
  • 145
    Freeman TB, Brundin P. Important aspects of surgical methodology for transplantation in Parkinson's disease. Restorative Therapies in Parkinson's Disease. P Brundin , CW Olanow , 7th edn. Berlin: Springer, 2006
  • 146
    Emgård M, Blomgren K, Brundin P. Characterisation of cell damage and death in embryonic mesencephalic tissue: a study on ultrastructure, vital stains and protease activity. Neuroscience 2002; 115: 11771187
  • 147
    Watts C, Brasted PJ, Dunnett SB. The morphology, integration, and functional efficacy of striatal grafts differ between cell suspensions and tissue pieces. Cell Transplant 2000; 9: 395407
  • 148
    Baker-Cairns BJ, Sloan DJ, Broadwell RD, Puklavec M, Charlton HM. Contributions of donor and host blood vessels in CNS allografts. Exp Neurol 1996; 142: 3646
  • 149
    Krum JM, Rosenstein JM. Patterns of angiogenesis in neural transplant models: II. Fetal neocortical transplants. J Comp Neurol 1988; 271: 331345
  • 150
    Broadwell RD, Charlton HM, Ebert P, Hickey WF, Villegas JC, Wolf AL. Angiogenesis and the blood-brain barrier in solid and dissociated cell grafts within the CNS. Prog Brain Res 1990; 82: 95101
  • 151
    Rosenstein JM, Brightman MW. Alterations of the blood-brain barrier after transplantation of autonomic ganglia into the mammalian central nervous system. J Comp Neurol 1986; 250: 339351
  • 152
    Brundin P, Nilsson OG, Gage FH, Björklund A. Cyclosporin A increases survival of cross-species intrastriatal grafts of embryonic dopamine-containing neurons. Exp Brain Res 1985; 60: 204208
  • 153
    Brundin P, Strecker RE, Widner H, Clarke DJ, Nilsson OG, Astedt B, Lindvall O, Björklund A. Human fetal dopamine neurons grafted in a rat model of Parkinson's disease: immunological aspects, spontaneous and drug-induced behaviour, and dopamine release. Exp Brain Res 1988; 70: 192208
  • 154
    Brundin P, Widner H, Nilsson OG, Strecker RE, Björklund A. Intracerebral xenografts of dopamine neurons: the role of immunosuppression and the blood-brain barrier. Exp Brain Res 1989; 75: 195207
  • 155
    Olanow CW, Goetz CG, Kordower JH, Stoessl AJ, Sossi V, Brin MF, Shannon KM, Nauert GM, Perl DP, Godbold J, Freeman TB. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson's disease. Ann Neurol 2003; 54: 403414
  • 156
    Kordower JH, Styren S, Clarke M, DeKosky ST, Olanow CW, Freeman TB. Fetal grafting for Parkinson's disease: expression of immune markers in two patients with functional fetal nigral implants. Cell Transplant 1997; 6: 213219
  • 157
    Piccini P, Brooks DJ, Björklund A, Gunn RN, Grasby PM, Rimoldi O, Brundin P, Hagell P, Rehncrona S, Widner H, Lindvall O. Dopamine release from nigral transplants visualized in vivo in a Parkinson's patient. Nat Neurosci 1999; 2: 11371140
  • 158
    Lindvall O, Sawle G, Widner H, Rothwell JC, Björklund A, Brooks D, Brundin P, Frackowiak R, Marsden CD, Odin P. Evidence for long-term survival and function of dopaminergic grafts in progressive Parkinson's disease. Ann Neurol 1994; 35: 172180
  • 159
    Hauser RA, Freeman TB, Snow BJ, Nauert M, Gauger L, Kordower JH, Olanow CW. Long-term evaluation of bilateral fetal nigral transplantation in Parkinson disease. Arch Neurol 1999; 56: 179187
  • 160
    Barker RA, Widner H. Immune problems in central nervous system cell therapy. NeuroRx 2004; 1: 472481
  • 161
    Mendez I, Sanchez-Pernaute R, Cooper O, Viñuela A, Ferrari D, Björklund L, Dagher A, Isacson O. Cell type analysis of functional fetal dopamine cell suspension transplants in the striatum and substantia nigra of patients with Parkinson's disease. Brain 2005; 128: 14981510
  • 162
    Mendez I, Viñuela A, Astradsson A, Mukhida K, Hallett P, Robertson H, Tierney T, Holness R, Dagher A, Trojanowski JQ, Isacson O. Dopamine neurons implanted into people with Parkinson's disease survive without pathology for 14 years. Nat Med 2008; 14: 507509
  • 163
    Redmond DE, Vinuela A, Kordower JH, Isacson O. Influence of cell preparation and target location on the behavioral recovery after striatal transplantation of fetal dopaminergic neurons in a primate model of Parkinson's disease. Neurobiol Dis 2008; 29: 103116
  • 164
    Sokal RR, Rohlf FJ. Biometry. 3rd edn. New York: Macmillan, 1995