SEARCH

SEARCH BY CITATION

References

  • 1
    Rechtschaffen A, Bergmann BM. Sleep deprivation in the rat: an update of the 1989 paper. Sleep2002; 25: 1824.
  • 2
    Everson CA, Szabo A. Recurrent restriction of sleep and inadequate recuperation induce both adaptive changes and pathological outcomes. Am J Physiol Regul Integr Comp Physiol2009; 297: R143040.
  • 3
    Tang Y, Preuss F, Turek FW, Jakate S, Keshavarzian A. Sleep deprivation worsens inflammation and delays recovery in a mouse model of colitis. Sleep Med2009; 10: 597603.
  • 4
    Barf RP, Meerlo P, Scheurink AJW. Chronic sleep disturbance impairs glucose homeostasis in rats. Int J Endocrinol2010. Article ID 819414, doi: 10.1155/2010/819414.
  • 5
    Sharma S, Kavuru M. Sleep and metabolism: an overview. Int J Endocrinol2010. Article ID 270832, doi: 10.1155/2010/270832.
  • 6
    Keefer L, Stepanski EJ, Ranjbaran Z, Benson LM, Keshavarzian A. An initial report of sleep disturbance in inactive inflammatory bowel disease. J Clin Sleep Med2006; 2: 40916.
  • 7
    Knutson KL, Turek FW. The U-shaped association between sleep and health: the 2 peaks do not mean the same thing. Sleep2006; 29: 8819.
  • 8
    Ranjbaran Z, Keefer L, Stepanski E, Farhadi A, Keshavarzian A. The relevance of sleep abnormalities to chronic inflammatory conditions. Inflamm Res2007; 56: 517.
  • 9
    Orr WC. Esophageal function during sleep: another danger in the night. Sleep Med2007; 8: 1056.
  • 10
    DattaS, MacLean RR. Neurobiological mechanisms for the regulation of mammalian sleep-wake behavior: reinterpretation of historical evidence and inclusion of contemporary cellular and molecular evidence. Neurosci Biobehav Rev2007; 31: 775824.
  • 11
    Cirelli C, Tononi G. Is sleep essential?PLoS Biol2008; 6: e216, doi: 10.1371/journal. pbio.0060216.
  • 12
    Dijk DJ. Regulation and functional correlates of slow wave sleep. J Clin Sleep Med2009; 5(Supplement to 5): S615.
  • 13
    Mukhametov LM, Rizzolatti G. The responses of lateral geniculate neurons to flashes of light during the sleep-waking cycle. Archs Ital Biol1970; 108: 32547.
  • 14
    Singer W. Control of thalamic transmission by corticofugal and ascending reticular pathways in the visual system. Physiol Rev1977; 57: 386416.
  • 15
    Chase MH. Confirmation of the consensus that glycinergic postsynaptic inhibition is responsible for the atonia of REM sleep. Sleep2008; 31: 148791.
  • 16
    Pigarev IN. Neurons of visual cortex respond to visceral stimulation during slow wave sleep. Neuroscience1994; 62: 123743.
  • 17
    Pigarev IN, Almirall H, Pigareva ML, Bautista V, Sánchez-Bahillo A, Barcia C, Herrero TM. Visceral signals reach visual cortex during slow wave sleep. Study in monkeys. Acta Neurobiol Exp2006; 66: 6973.
  • 18
    Pigarev IN, Almirall H, Pigareva ML. Cortical evoked responses to magnetic stimulayion of macaque’s abdominal wall in sleep-wake cycle. Acta Neurobiologiae Experimentalis2008; 68: 916.
  • 19
    Pigarev IN, Bagaev VA, Busygina II, Fedorov GO, Levichkina EV. Causal link between myoelectrical intestinal activity and cortical neuronal firing in sleep. J Sleep Res. 2004; 13: S1, 575.
  • 20
    Noda H, Freeman RB, Gies B, Creutzfeldt OD. Neural responses in the visual cortex of awake cats to stationary and moving targets. Exp Brain Res1971; 12: 389405.
  • 21
    Pigarev IN, Rodionova EI. Two visual areas located in the middle suprasylvian gyrus (cytoarchitectonic field 7) of the cat’s cortex. Neuroscience1998; 85: 71732.
  • 22
    Pigarev IN, Saalmann YB, Vidyasagar TR. A minimally invasive and reversible system for chronic recordings from multiple brain sites in macaque monkeys. J Neurosci Methods2009; 181: 1518.
  • 23
    Pigarev IN, Nothdurft H-Ch, Kastner S. Evidence for asynchronous development of sleep in cortical areas. NeuroReport1997; 8: 255760.
  • 24
    Reinoso-Suárez F. Topographischer Hirnatlas der Katze für experimental-physiologische Untersuchungen. Darmstadt: Merck, 1961.
  • 25
    Papasova M, Milenov K. Method for biopotential recordings from stomach muscles of cats with chronically implanted electrodes. Izv na Inst po Phisiol BAN (Bulgarian), 1965; 9: 18795.
  • 26
    Papasova M, Boev K, Milenov K, Atanasova E. Mechanical and bioelectrical activity of the stomach wall. Bull Inst Physiol Bulg Ac Sci1966a; 10: 1526.
  • 27
    Zimmermann M. Ethical Principles for maintenance and use of animals in neuroscience research. Neurosci Lett1987; 73: 1.
  • 28
    Levichkina EV, Loshkarev AA, Rodionova EI, Popova EP, Pigarev IN. Whether radial receptive field organization of the fourth extrastriate crescent (area V4A) gives special advantage for analysis of the optic flow. Comparison with the first crescent (area V2). Exp Brain Res2007; 182: 21522.
  • 29
    Pigarev IN. New visual area on the lower bank of cat’s cruciate sulcus. Neurophysiologia (Kiev)1984; 16: 76673.
  • 30
    Papasova M, Boev K, Milenov K, Atanasova E. Dependence between the appearence of spike-potentials in the electrogastrogram and the intensity of the contraction wave of the gastric wall. Comptes rend d l’Acad Bulg d Sci1966b; 19: 24150.
  • 31
    Pigarev IN, Bagaev VA. Slow waves in EEG and bursty firing of cortical neurons during sleep reflect the peristaltic activity of gastro-intestinal system. J Sleep Res. 2002; 11: S1, 1778.
  • 32
    Timofeev I, Grenier F, Bazhenov M, Sejnowski TJ, Steriade M. Origin of slow cortical oscillations in deafferented cortical slabs. Cereb Cortex2000; 10: 118599.
  • 33
    Sanchez-Vives MV, McCormick DA. Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nature Neurosci2000; 3: 102734.
  • 34
    Steriade M, Timofeev I, Grenier F. Natural waking and sleep states: a view from inside neocortical neurons. J Neurophysiol2001; 85: 196985.
  • 35
    Contreras D, Steriade M. Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships. J Neurosci1995; 15: 60422.
  • 36
    Rigas P, Castro-Alamancos MA. Thalamocortical Up states: different effects of intrinsic and extrinsic cortical inputs on persistent activity. J Neurosci2007; 27: 426172.
  • 37
    Crunelli V, Hughes SW. The slow (<1 Hz) rhythm of non-REM sleep: a dialogue between three cardinal oscillators. Nature Neurosci2010; 13: 917.
  • 38
    Tinuper P, Montagna P, Medori R, Cortelli P, Zucconi M, Baruzzi A, Lugaresi E. The thalamus participates in the regulation of the sleep-waking cycle. A clinico-pathological study in fatal familial thalamic degeneration. Electroencephalogr Clin Neurophysiol1989; 73: 11723.
  • 39
    Downman CB. Cerebral destination of splanchnic afferent impulses. J Physiol1951; 113: 454.
  • 40
    O’Brien JH, Pimpaneau A, Albe-Fessard D. Evoked cortical responses to vagal laryngeal and facial afferents in monkeys under chloralose anaesthesia. Electroencephalogr Clin Neurophysiol1971; 31: 720.
  • 41
    Ito S. Electrophysiological evidence for projections of myelinated and nonmyelinated primary vagal afferents to the rat insular cortex. Neurosci Lett1994; 179: 2932.
  • 42
    Ito S. Visceral region in the rat primary somatosensory cortex identified by vagal evoked potential. J Comp Neurol2002; 444: 1024.
  • 43
    Ito S, Craig AD. Vagal Input to Lateral Area 3a in Cat Cortex. AJP JN Physiol2003; 90: 14354.
  • 44
    Head H. On disturbances of sensation with especial reference to the pain of visceral disease. Brain1896; 19: 11276.
  • 45
    Kuo DC, Krauthamer GM, Yamasaki DS. The organization of visceral sensory neurons in thoracic dorsal root ganglia (DRG) of the cat studied by horseradish peroxidase (HRP) reaction using the cryostat. Brain Res1981; 208: 18791.
  • 46
    Cervero F. Somatic and visceral inputs to the thoracic spinal cord of the cat: effects of noxious stimulation of the biliary system. J Physiol1983; 337: 5167.
  • 47
    Cervero F, Connell LA, Lawson SN. Somatic and visceral primary afferents in the lower thoracic dorsal root ganglia of the cat. J Comp Neurol1984; 228: 42231.
  • 48
    Akeyson EW, Schramm LP. Splanchnic and somatic afferent convergence on cervical spinal neurons of the rat. Am J Physiol1994; 266(1 Pt 2): R26876.
  • 49
    Perry MJ, Lawson SN. Differences in expression of oligosaccharides, neuropeptides, carbonic anhydrase and neurofilament in rat primary afferent neurons retrogradely labelled via skin, muscle or visceral nerves. Neuroscience1998; 85: 293310.
  • 50
    Arendt-Nielsen L, Svensson P. Referred muscle pain: basic and clinical findings. Clin J Pain2001; 17: 119.
  • 51
    Peles SH, Miranda A, Shaker R, Sengupta JN. Acute nociceptive somatic stimulus sensitizes neurones in the spinal cord to colonic distension in the rat. J Physiol2004; 560: 291302.
  • 52
    Hobson AR, Chizh B, Hicks K, Aziz Q, Worthen S, Lawrence P, Dewi O, Boyle Y. Neurophysiological evaluation of convergent afferents innervating the human esophagus and area of referred pain on the anterior chest wall. Am J Physiol Gastrointest Liver Physiol2010; 298: G316.
  • 53
    Hughes HC, Mullikin WH. Brainstem afferents to the lateral geniculate nucleus of the cat. Exp Brain Res1984; 54: 2538.
  • 54
    Brooks DC, Bizzi E. Brain stem electrical activity during deep sleep. Arch Ital Biol1963; 101: 64865.
  • 55
    Pigarev IN, Fedorov GO, Levichkina EV, Marimon JM, Pigareva ML, Almirall H. Visually triggered K-complexes: a study in New Zealand rabbits. Exp Brain Res2011; 210: 13142.
  • 56
    Ackner B, Pampiglione G. Some relationships between peripheral vasomotor and EEG changes. J Neurol Neurosurg Psychiat1957; 20: 5864.
  • 57
    Pampiglione G, Ackner B. The effects of repeated stimuli upon EEG and vasomotor activity during sleep in man. Brain1958; 81: 6474.
  • 58
    Johnson LC, Karpan WE. Autonomic correlates of the spontaneous K-complex. Psychophysiology1968; 4: 44452.
  • 59
    Takigawa M, Uchida T, Matsumoto K. Correlation between occurence of spontaneous K-complex and the two physiological rhythms of cardiac and respiratory cycles. No To Shinkei1980; 32: 12733.
  • 60
    Halász P, Pál I, Rajna P. K-complex formation of the EEG in sleep. A survey and new examinations. Acta Physiol Hung1985; 65: 335.
  • 61
    Heald S, Siebers RW, Maling TJ. K-complex vasoconstrictor response: evidence for central vasomotor downregulation in borderline hypertension. J Hypertens1989; (Suppl. 7): S289.
  • 62
    Okada H, Iwase S, Mano T, Sugiyama Y, Watanabe T. Changes in muscle sympathetic nerve activity during sleep in humans. Neurology1991; 411: 19616.
  • 63
    Hornyak M, Cejnar M, Elam M, Matousek M, Wallin BG. Sympathetic muscle nerve activity during sleep in man. Brain1991; 114: 128195.
  • 64
    Shimizu T, Takahashi Y, Suzuki K, Kogawa S, Tashiro T, Takahasi K, Hishikawa Y. Muscle nerve sympathetic activity during sleep and its change with arousal response. J Sleep Res1992; 1: 17885.
  • 65
    Noll G, Elam M, Kunimoto M, Karisson T, Wallin BG. Skin sympathetic nerve activity and effector function during sleep in humans. Acta Physiol Scand1994; 151: 31929.
  • 66
    Niiyama Y, Sato N, Katsuzava O, Hishikawa Y. Electrophysiological evidence suggesting that sensory stimuli of unknown origin induced spontaneous K-complexes. Electroencephalogr Clin Neurophysiol1996; 98: 394400.
  • 67
    Monstad P, Guilleminault Ch. Cardiovascular changes associated with spontaneous and evoked K-complexes. Neurosci Lett1999; 263: 2113.
  • 68
    Tank J, Diedrich A, Hale N, Niaz FE, Furlan R, Robertson RM, Mosqueda-Garcia R. Relationship between blood pressure, sleep K-complexes, and muscle sympathetic nerve activity in humans. Am J Physiol Regul Integr Comp Physiol2003; 285: R20814.
  • 69
    Cash SS, Halgren E, Dehghani N, Rossetti AO, Thesen T, Wang C, Devinsky O, Kuzniecky R, Doyle W, Madsen JR, Bromfield E, Eröss L, Halász P, Karmos G, Csercsa R, Wittner L, Ulbert I. The human K-complex represents an isolated cortical down-state. Science2009; 324: 10847.
  • 70
    Bailey P, Bremer F. A sensory cortical representation of the vagus nerve. With a note on the effects of low blood presure on the cortical electrogramm. J Neurophysiol1938; 1: 405.
  • 71
    Amassian VE. Cortical representation of visceral afferents. J Neurophysiol1951; 14: 435.
  • 72
    Newman P. Potential changes in the parietal cortex on stimulation of the splanchnic nerve. J Physiol1952; 116: 8.
  • 73
    Patton HD, Amassian VE. Cortical projection zone of chorda tympany nerve in cat. J Neurophysiol1952; 15: 245.
  • 74
    Gardner ED, Thomas LM, Morin F. Cortical projections of fast visceral afferents in the cat and monkey. Amer J Physiol1955; 183: 43845.
  • 75
    Chernigovskiy VN. Interoceptors. Moscow: Medgiz, 1960.