• 1
    Arend WP. Inhibiting the effects of cytokines in human diseases. Adv Intern Med1995; 40: 36594.
  • 2
    D’Haens GR, Panaccione R, Higgins PD et al. The London Position Statement of the World Congress of Gastroenterology on Biological Therapy for IBD with the European Crohn’s and Colitis Organization: when to start, when to stop, which drug to choose, and how to predict response?Am J Gastroenterol2011; 106: 199212.
  • 3
    Geiler J, Buch M, McDermott MF. Anti-TNF treatment in rheumatoid arthritis. Curr Pharm Des2011; 17: 314154.
  • 4
    Mulak A, Bonaz B. Irritable bowel syndrome: a model of the brain-gut interactions. Med Sci Monit2004; 10: RA5562.
  • 5
    Bonaz BL, Bernstein CN. Brain–gut interactions in inflammatory bowel diseases. Gastroenterology2013; 144: 3649. Oct 11.
  • 6
    Pellissier S, Dantzer C, Canini F, Mathieu N, Bonaz B. Psychological adjustment and autonomic disturbances in inflammatory bowel diseases and irritable bowel syndrome. Psychoneuroendocrinology2010; 35: 65362.
  • 7
    Koopman FA, Stoof SP, Straub RH, Van Maanen MA, Vervoordeldonk MJ, Tak PP. Restoring the balance of the autonomic nervous system as an innovative approach to the treatment of rheumatoid arthritis. Mol Med2011; 17: 93748.
  • 8
    Taché Y. The parasympathetic nervous system in the pathophysiology of the gastrointestinal tract. In: Bolis CL, Licinio J, eds. Handbook of the Autonomic Nervous System in Health and Disease. Liana C. Bolis, Julio Licinio, and Stefano Govoni. New York: Marcel Dekker, Inc. Publisher, 2003: 45594.
  • 9
    Dantzer R, Konsman JP, Bluthe RM, Kelley KW. Neural and humoral pathways of communication from the immune system to the brain: parallel or convergent?Auton Neurosci2000; 85: 605.
  • 10
    Tracey KJ. Physiology and immunology of the cholinergic antiinflammatory pathway. J Clin Invest2007; 117: 28996.
  • 11
    Rosas-Ballina M, Ochani M, Parrish WR et al. Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia. Proc Natl Acad Sci USA2008; 105: 1100813.
  • 12
    Beekwilder JP, Beems T. Overview of the clinical applications of vagus nerve stimulation. J Clin Neurophysiol2010; 27: 1308.
  • 13
    Berthoud HR, Neuhuber WL. Functional and chemical anatomy of the afferent vagal system. Auton Neurosci2000; 85: 117.
  • 14
    Prechtl JC, Powley TL. The fiber composition of the abdominal vagus of the rat. Anat Embryol (Berl)1990; 181: 10115.
  • 15
    Woodbury DM, Woodbury JW. Effects of vagal stimulation on experimentally induced seizures in rats. Epilepsia1990; 31(Suppl 2): S719.
  • 16
    Altschuler SM, Bao XM, Bieger D, Hopkins DA, Miselis RR. Viscerotopic representation of the upper alimentary tract in the rat: sensory ganglia and nuclei of the solitary and spinal trigeminal tracts. J Comp Neurol1989; 283: 24868.
  • 17
    Erlanger J, Gasser ILS. THe action potential in fibers of slow conduction in spinal roots and somatic nerves. Am J Physiol1930; 92: 4381.
  • 18
    Lanska DJ. JLCorning and vagal nerve stimulation for seizures in the 1880s. Neurology2002; 58: 4529.
  • 19
    Bailey H, Bremer FA. Sensory cortical representation of the vagus nerve. J Neurophysiol1938; 1: 40512.
  • 20
    Penry JK, Dean JC. Prevention of intractable partial seizures by intermittent vagal stimulation in humans: preliminary results. Epilepsia1990; 31(Suppl 2): S403.
  • 21
    Groves DA, Brown VJ. Vagal nerve stimulation: a review of its applications and potential mechanisms that mediate its clinical effects. Neurosci Biobehav Rev2005; 29: 493500.
  • 22
    Morris GL, 3rd, Mueller WM. Long-term treatment with vagus nerve stimulation in patients with refractory epilepsy. The Vagus Nerve Stimulation Study Group E01-E05. Neurology1999; 53: 17315.
  • 23
    Martin JL, Martin-Sanchez E. Systematic review and meta-analysis of vagus nerve stimulation in the treatment of depression: variable results based on study designs. Eur Psychiatry2012; 27: 14755.
  • 24
    Reid SA. Surgical technique for implantation of the neurocybernetic prosthesis. Epilepsia1990; 31(Suppl 2): S389.
    Direct Link:
  • 25
    Zanchetti A, Wang SC, Moruzzi G. Effect of afferent vagal stimulation on the electroencephalogram of the cat in cerebral isolation. Boll Soc Ital Biol Sper1952; 28: 6278.
  • 26
    Krahl SE, Senanayake SS, Handforth A. Destruction of peripheral C-fibers does not alter subsequent vagus nerve stimulation-induced seizure suppression in rats. Epilepsia2001; 42: 5869.
  • 27
    Cechetto DF. Central representation of visceral function. Fed Proc1987; 46: 1723.
  • 28
    Krahl SE, Clark KB, Smith DC, Browning RA. Locus coeruleus lesions suppress the seizure-attenuating effects of vagus nerve stimulation. Epilepsia1998; 39: 70914.
  • 29
    Naritoku DK, Terry WJ, Helfert RH. Regional induction of fos immunoreactivity in the brain by anticonvulsant stimulation of the vagus nerve. Epilepsy Res1995; 22: 5362.
  • 30
    Lomarev M, Denslow S, Nahas Z, Chae JH, George MS, Bohning DE. Vagus nerve stimulation (VNS) synchronized BOLD fMRI suggests that VNS in depressed adults has frequency/dose dependent effects. J Psychiatr Res2002; 36: 21927.
  • 31
    Chae JH, Nahas Z, Lomarev M et al. A review of functional neuroimaging studies of vagus nerve stimulation (VNS). J Psychiatr Res2003; 37: 44355.
  • 32
    Ben-Menachem E. Vagus nerve stimulation, side effects, and long-term safety. J Clin Neurophysiol2001; 18: 4158.
  • 33
    Handforth A, DeGiorgio CM, Schachter SC et al. Vagus nerve stimulation therapy for partial-onset seizures: a randomized active-control trial. Neurology1998; 51: 4855.
  • 34
    Greenwood B, Davison JS. The relationship between gastrointestinal motility and secretion. Am J Physiol1987; 252(1 Pt 1): G17.
  • 35
    Silverman MN, Sternberg EM. Glucocorticoid regulation of inflammation and its functional correlates: from HPA axis to glucocorticoid receptor dysfunction. Ann NY Acad Sci2012; 1261: 5563.
  • 36
    Goehler LE, Gaykema RP, Nguyen KT et al. Interleukin-1beta in immune cells of the abdominal vagus nerve: a link between the immune and nervous systems?J Neurosci1999; 19: 2799806.
  • 37
    Ericsson A, Kovacs KJ, Sawchenko PE. A functional anatomical analysis of central pathways subserving the effects of interleukin-1 on stress-related neuroendocrine neurons. J Neurosci1994; 14: 897913.
  • 38
    Ek M, Kurosawa M, Lundeberg T, Ericsson A. Activation of vagal afferents after intravenous injection of interleukin-1beta: role of endogenous prostaglandins. J Neurosci1998; 18: 94719.
  • 39
    Mascarucci P, Perego C, Terrazzino S, De Simoni MG. Glutamate release in the nucleus tractus solitarius induced by peripheral lipopolysaccharide and interleukin-1 beta. Neuroscience1998; 86: 128590.
  • 40
    Saper CB. The central autonomic nervous system: conscious visceral perception and autonomic pattern generation. Annu Rev Neurosci2002; 25: 43369.
  • 41
    Sawchenko PE, Swanson LW. The organization of noradrenergic pathways from the brainstem to the paraventricular and supraoptic nuclei in the rat. Brain Res1982; 257: 275325.
  • 42
    Chuluyan HE, Saphier D, Rohn WM, Dunn AJ. Noradrenergic innervation of the hypothalamus participates in adrenocortical responses to interleukin-1. Neuroendocrinology1992; 56: 10611.
  • 43
    Fleshner M, Goehler LE, Hermann J, Relton JK, Maier SF, Watkins LR. Interleukin-1 beta induced corticosterone elevation and hypothalamic NE depletion is vagally mediated. Brain Res Bull1995; 37: 60510.
  • 44
    Gaykema RP, Dijkstra I, Tilders FJ. Subdiaphragmatic vagotomy suppresses endotoxin-induced activation of hypothalamic corticotropin-releasing hormone neurons and ACTH secretion. Endocrinology1995; 136: 471720.
  • 45
    Ghia JE, Blennerhassett P, Collins SM. Impaired parasympathetic function increases susceptibility to inflammatory bowel disease in a mouse model of depression. J Clin Invest2008; 118: 220918.
  • 46
    O’Keane V, Dinan TG, Scott L, Corcoran C. Changes in hypothalamic-pituitary-adrenal axis measures after vagus nerve stimulation therapy in chronic depression. Biol Psychiatry2005; 58: 9638.
  • 47
    Hosoi T, Okuma Y, Nomura Y. Electrical stimulation of afferent vagus nerve induces IL-1beta expression in the brain and activates HPA axis. Am J Physiol Regul Integr Comp Physiol2000; 279: R1417.
  • 48
    Borovikova LV, Ivanova S, Zhang M et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature2000; 405: 45862.
  • 49
    Olofsson PS, Rosas-Ballina M, Levine YA, Tracey KJ. Rethinking inflammation: neural circuits in the regulation of immunity. Immunol Rev2012; 248: 188204.
  • 50
    Galvis G, Lips KS, Kummer W. Expression of nicotinic acetylcholine receptors on murine alveolar macrophages. J Mol Neurosci2006; 30: 1078.
  • 51
    Skok M, Grailhe R, Agenes F, Changeux JP. The role of nicotinic acetylcholine receptors in lymphocyte development. J Neuroimmunol2006; 171: 8698.
  • 52
    Nizri E, Hamra-Amitay Y, Sicsic C, Lavon I, Brenner T. Anti-inflammatory properties of cholinergic up-regulation: a new role for acetylcholinesterase inhibitors. Neuropharmacology2006; 50: 5407.
  • 53
    Pavlov VA, Wang H, Czura CJ, Friedman SG, Tracey KJ. The cholinergic anti-inflammatory pathway: a missing link in neuroimmunomodulation. Mol Med2003; 9: 12534.
  • 54
    Wang H, Yu M, Ochani M et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature2003; 421: 3848.
  • 55
    Snoek SA, Verstege MI, van der Zanden EP et al. Selective alpha7 nicotinic acetylcholine receptor agonists worsen disease in experimental colitis. Br J Pharmacol2010; 160: 32233.
  • 56
    Ghia JE, Blennerhassett P, El-Sharkawy RT, Collins SM. The protective effect of the vagus nerve in a murine model of chronic relapsing colitis. Am J Physiol Gastrointest Liver Physiol2007; 293: G7118.
  • 57
    Ghia JE, Blennerhassett P, Collins SM. Vagus nerve integrity and experimental colitis. Am J Physiol Gastrointest Liver Physiol2007; 293: G5607.
  • 58
    Huston JM, Ochani M, Rosas-Ballina M et al. Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis. J Exp Med2006; 203: 16238.
  • 59
    Buijs RM, van der Vliet J, Garidou ML, Huitinga I, Escobar C. Spleen vagal denervation inhibits the production of antibodies to circulating antigens. PLoS ONE2008; 3: e3152.
  • 60
    Bratton BO, Martelli D, McKinley MJ, Trevaks D, Anderson CR, McAllen RM. Neural regulation of inflammation: no neural connection from vagus to splenic sympathetic neurons. Exp Physiol2012; 97: 11805.
  • 61
    Bellinger DL, Lorton D, Hamill RW, Felten SY, Felten DL. Acetylcholinesterase staining and choline acetyltransferase activity in the young adult rat spleen: lack of evidence for cholinergic innervation. Brain Behav Immun1993; 7: 191204.
  • 62
    Huston JM, Wang H, Ochani M et al. Splenectomy protects against sepsis lethality and reduces serum HMGB1 levels. J Immunol2008; 181: 35359.
  • 63
    Kin NW, Sanders VM. It takes nerve to tell T and B cells what to do. J Leukoc Biol2006; 79: 1093104.
  • 64
    Karimi K, Bienenstock J, Wang L, Forsythe P. The vagus nerve modulates CD4 +  T cell activity. Brain Behav Immun2010; 24: 31623.
  • 65
    Rosas-Ballina M, Olofsson PS, Ochani M et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science2011; 334: 98101.
  • 66
    Tache Y, Bonaz B. Corticotropin-releasing factor receptors and stress-related alterations of gut motor function. J Clin Invest2007; 117: 3340.
  • 67
    Wood SK, Woods JH. Corticotropin-releasing factor receptor-1: a therapeutic target for cardiac autonomic disturbances. Expert Opin Ther Targets2007; 11: 140113.
  • 68
    Straub RH, Wiest R, Strauch UG, Harle P, Scholmerich J. The role of the sympathetic nervous system in intestinal inflammation. Gut2006; 55: 16409.
  • 69
    van Westerloo DJ, Giebelen IA, Florquin S et al. The vagus nerve and nicotinic receptors modulate experimental pancreatitis severity in mice. Gastroenterology2006; 130: 182230.
  • 70
    The FO, Boeckxstaens GE, Snoek SA et al. Activation of the cholinergic anti-inflammatory pathway ameliorates postoperative ileus in mice. Gastroenterology2007; 133: 121928.
  • 71
    de Jonge WJ, van der Zanden EP, The FO et al. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nat Immunol2005; 6: 84451.
  • 72
    Miceli PC, Jacobson K. Cholinergic pathways modulate experimental dinitrobenzene sulfonic acid colitis in rats. Auton Neurosci2003; 105: 1624.
  • 73
    Pavlov VA, Parrish WR, Rosas-Ballina M et al. Brain acetylcholinesterase activity controls systemic cytokine levels through the cholinergic anti-inflammatory pathway. Brain Behav Immun2009; 23: 415.
  • 74
    Luyer MD, Greve JW, Hadfoune M, Jacobs JA, Dejong CH, Buurman WA. Nutritional stimulation of cholecystokinin receptors inhibits inflammation via the vagus nerve. J Exp Med2005; 202: 10239.
  • 75
    Sloan RP, Shapiro PA, Demeersman RE et al. Aerobic exercise attenuates inducible TNF production in humans. J Appl Physiol2007; 103: 100711.
  • 76
    Jae SY, Heffernan KS, Yoon ES, Lee MK, Fernhall B, Park WH. The inverse association between cardiorespiratory fitness and C-reactive protein is mediated by autonomic function: a possible role of the cholinergic antiinflammatory pathway. Mol Med2009; 15: 2916.
  • 77
    Oke SL, Tracey KJ. The inflammatory reflex and the role of complementary and alternative medical therapies. Ann NY Acad Sci2009; 1172: 17280.
  • 78
    Bernik TR, Friedman SG, Ochani M et al. Pharmacological stimulation of the cholinergic antiinflammatory pathway. J Exp Med2002; 195: 7818.
  • 79
    Bonaz B, Plourde V, Tache Y. Abdominal surgery induces Fos immunoreactivity in the rat brain. J Comp Neurol1994; 349: 21222.
  • 80
    Barquist E, Bonaz B, Martinez V, Rivier J, Zinner MJ, Tache Y. Neuronal pathways involved in abdominal surgery-induced gastric ileus in rats. Am J Physiol1996; 270(4 Pt 2): R88894.
  • 81
    Kalff JC, Turler A, Schwarz NT et al. Intra-abdominal activation of a local inflammatory response within the human muscularis externa during laparotomy. Ann Surg2003; 237: 30115.
  • 82
    Wang T, Niu G, Kortylewski M et al. Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med2004; 10: 4854.
  • 83
    Costantini TW, Bansal V, Krzyzaniak M et al. Vagal nerve stimulation protects against burn-induced intestinal injury through activation of enteric glia cells. Am J Physiol Gastrointest Liver Physiol2010; 299: G130818.
  • 84
    Van Landeghem L, Chevalier J, Mahe MM et al. Enteric glia promote intestinal mucosal healing via activation of focal adhesion kinase and release of proEGF. Am J Physiol Gastrointest Liver Physiol2011; 300: G97687.
  • 85
    Chiang N, Schwab JM, Fredman G, Kasuga K, Gelman S, Serhan CN. Anesthetics impact the resolution of inflammation. PLoS ONE2008; 3: E1879.
  • 86
    Meregnani J, Clarencon D, Vivier M et al. Anti-inflammatory effect of vagus nerve stimulation in a rat model of inflammatory bowel disease. Auton Neurosci2011; 1-2: 829.
  • 87
    Morris GP, Beck PL, Herridge MS, Depew WT, Szewczuk MR, Wallace JL. Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology1989; 96: 795803.
  • 88
    Fogel R, Zhang X, Renehan WE. Relationships between the morphology and function of gastric and intestinal distention-sensitive neurons in the dorsal motor nucleus of the vagus. J Comp Neurol1996; 364: 7891.
  • 89
    Travagli RA, Gillis RA, Rossiter CD, Vicini S. Glutamate and GABA-mediated synaptic currents in neurons of the rat dorsal motor nucleus of the vagus. Am J Physiol1991; 260(3 Pt 1): G5316.
  • 90
    Travagli RA, Hermann GE, Browning KN, Rogers RC. Brainstem circuits regulating gastric function. Annu Rev Physiol2006; 68: 279305.
  • 91
    Osharina V, Bagaev V, Wallois F, Larnicol N. Autonomic response and Fos expression in the NTS following intermittent vagal stimulation: importance of pulse frequency. Auton Neurosci2006; 126-127: 7280.
  • 92
    Reyt S, Picq C, Sinniger V, Clarencon D, Bonaz B, David O. Dynamic Causal Modelling and physiological confounds: a functional MRI study of vagus nerve stimulation. Neuroimage2010; 52: 145664.
  • 93
    Bonaz B. The cholinergic anti-inflammatory pathway and the gastrointestinal tract. Gastroenterology2007; 133: 13703.
  • 94
    Bercik P, Verdu EF, Collins SM. Is irritable bowel syndrome a low-grade inflammatory bowel disease?Gastroenterol Clin North Am2005; 34: 23545. vi-vii.
  • 95
    Chen SL, Wu XY, Cao ZJ et al. Subdiaphragmatic vagal afferent nerves modulate visceral pain. Am J Physiol Gastrointest Liver Physiol2008; 294: G14419.
  • 96
    Westman M, Engstrom M, Catrina AI, Lampa J. Cell specific synovial expression of nicotinic alpha 7 acetylcholine receptor in rheumatoid arthritis and psoriatic arthritis. Scand J Immunol2009; 70: 13640.
  • 97
    Sandborn WJ. Nicotine therapy for ulcerative colitis: a review of rationale, mechanisms, pharmacology, and clinical results. Am J Gastroenterol1999; 94: 116171.
    Direct Link:
  • 98
    Yu H, Yang YH, Rajaiah R, Moudgil KD. Nicotine-induced differential modulation of autoimmune arthritis in the Lewis rat involves changes in interleukin-17 and anti-cyclic citrullinated peptide antibodies. Arthritis Rheum2011; 63: 98191.
  • 99
    van Maanen MA, Lebre MC, van der Poll T et al. Stimulation of nicotinic acetylcholine receptors attenuates collagen-induced arthritis in mice. Arthritis Rheum2009; 60: 11422.
  • 100
    Zhou Y, Zuo X, Li Y, Wang Y, Zhao H, Xiao X. Nicotine inhibits tumor necrosis factor-alpha induced IL-6 and IL-8 secretion in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Rheumatol Int2012; 32: 97104.
  • 101
    Cerveny P, Bortlik M, Kubena A, Vlcek J, Lakatos PL, Lukas M. Nonadherence in inflammatory bowel disease: results of factor analysis. Inflamm Bowel Dis2007; 13: 12449.
  • 102
    Stefan H, Kreiselmeyer G, Kerling F et al. Transcutaneous vagus nerve stimulation (t-VNS) in pharmacoresistant epilepsies: a proof of concept trial. Epilepsia2012; 53: e1158.