SEARCH

SEARCH BY CITATION

References

  • Allen JW, Shachar-Hill Y. 2009. Sulfur transfer through an arbuscular mycorrhiza. Plant Physiology 149: 549560.
  • Ames RN, Reid CPP, Porter LK, Cambardella C. 1983. Hyphal uptake and transport of nitrogen from two 15N-labelled sources by Glomus mosseae, a vesicular -arbuscular mycorrhizal fungus. New Phytologist 95: 381396.
  • Amtmann A, Armengaud P. 2009. Effects of N, P, K and S on metabolism: new knowledge gained from multi-level analysis. Current Opinion in Plant Biology 12: 275283.
  • Astolfi S, Zuchi S, Hubberten H-M, Pinton R, Hoefgen R. 2010. Supply of sulphur to S-deficient young barley seedlings restores their capability to cope with iron shortage. Journal of Experimental Botany 61: 799806.
  • Balzergue C, Puech-Pages V, Becard G, Rochange SF. 2011. The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events. Journal of Experimental Botany 62: 10491060.
  • Benedito VA, Li H, Dai X, Wandrey M, He J, Kaundal R, Torres-Jerez I, Gomez SK, Harrison MJ, Tang Y et al. 2010. Genomic inventory and transcriptional analysis of Medicago truncatula transporters. Plant Physiology 152: 17161730.
  • Branscheid A, Sieh D, Pant BD, May P, Devers EA, Elkrog A, Schauser L, Scheible WR, Krajinski F. 2010. Expression pattern suggests a role of MiR399 in the regulation of the cellular response to local Pi increase during arbuscular mycorrhizal symbiosis. Molecular Plant-Microbe Interactions 23: 915926.
  • Breuillin F, Schramm J, Hajirezaei M, Ahkami A, Favre P, Druege U, Hause B, Bucher M, Kretzschmar T, Bossolini E et al. 2010. Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. The Plant Journal 64: 10021017.
  • Bucher M. 2007. Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytologist 173: 1126.
  • Casieri L, Gallardo K, Wipf D. 2012. Transcriptional response of Medicago truncatula sulphate transporters to arbuscular mycorrhizal symbiosis with and without sulphur stress. Planta 235: 14311447.
  • Clark RB, Zeto SK. 2000. Mineral acquisition by arbuscular mycorrhizal plants. Journal of Plant Nutrition 23: 867902.
  • Durenkamp M, De Kok LJ. 2004. Impact of pedospheric and atmospheric sulphur nutrition on sulphur metabolism of Allium cepa L., a species with a potential sink capacity for secondary sulphur compounds. Journal of Experimental Botany 55: 18211830.
  • Gaude N, Bortfeld S, Duensing N, Lohse M, Krajinski F. 2012. Arbuscule-containing and non-colonized cortical cells of mycorrhizal roots undergo extensive and specific reprogramming during arbuscular mycorrhizal development. The Plant Journal 69: 510528.
  • Guether M, Neuhauser B, Balestrini R, Dynowski M, Ludewig U, Bonfante P. 2009. A mycorrhizal-specific ammonium transporter from Lotus japonicus acquires nitrogen released by arbuscular mycorrhizal fungi. Plant Physiology 150: 7383.
  • Gutierrez-Marcos JF, Roberts MA, Campbell EI, Wray JL. 1996. Three members of a novel small gene-family from Arabidopsis thaliana able to complement functionally an Escherichia coli mutant defective in PAPS reductase activity encode proteins with a thioredoxin-like domain and “APS reductase” activity. Proceedings of the National Academy of Sciences, USA 93: 1337713382.
  • Hawkesford MJ, De Kok LJ. 2006. Managing sulphur metabolism in plants. Plant, Cell & Environment 29: 382395.
  • Hepper CM. 1984. Inorganic sulphur nutrition of the vesicular-arbuscular mycorrhizal fungus Glomus caledonium. Soil Biology and Biochemistry 16: 669671.
  • Hoagland DR, Arnon DI. 1940. Crop production in artificial culture solutions and in soils with special reference to factors influencing yield absorption of inorganic nutrients. Soil Science 50: 463483.
  • Javot H, Penmetsa RV, Terzaghi N, Cook DR, Harrison MJ. 2007a. A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences, USA 104: 17201725.
  • Javot H, Pumplin N, Harrison MJ. 2007b. Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant, Cell & Environment 30: 310322.
  • Kakar K, Wandrey M, Czechowski T, Gaertner T, Scheible W-R, Stitt M, Torres-Jerez I, Xiao Y, Redman J, Wu H et al. 2008. A community resource for high-throughput quantitative RT-PCR analysis of transcription factor gene expression in Medicago truncatula. Plant Methods 4: 18.
  • Kim H, Awazuhara M, Hayashi H, Chino M, Fujiwara T. 1997. Analysis of O-acetyl-L-serine in in vitro cultured soybean cotyledons. In: Cram WJ, De Kok LJ, Stulen I, Brunold C, Rennenberg H, eds. Sulphur Metabolism in higher plants. Leiden, the Netherlands: Backhuys Publishers, 307309.
  • Kopriva S, Suter M, von Ballmoos P, Hesse H, Krahenbuhl U, Rennenberg H, Brunold C. 2002. Interaction of sulfate assimilation with carbon and nitrogen metabolism in Lemna minor. Plant Physiology 130: 14061413.
  • Krueger S, Niehl A, Lopez Martin MC, Steinhauser D, Donath A, Hildebrandt T, Romero LC, Hoefgen R, Gotor C, Hesse H. 2009. Analysis of cytosolic and plastidic serine acetyltransferase mutants and subcellular metabolite distributions suggests interplay of the cellular compartments for cysteine biosynthesis in Arabidopsis. Plant, Cell and Environment 32: 349367.
  • Krusell L, Krause K, Ott T, Desbrosses G, Krämer U, Sato S, Nakamura Y, Tabata S, James EK, Sandal N et al. 2005. The sulfate transporter SST1 is crucial for symbiotic nitrogen fixation in Lotus japonicus root nodules. The Plant Cell 17: 16251636.
  • Lehmann J, Solomon D, Zhao FJ, McGrath SP. 2008. Atmospheric SO2 emissions since the late 1800s change organic sulfur forms in humic substance extracts of soils. Environmental Science and Technology 42: 35503555.
  • Leigh J, Hodge A, Fitter AH. 2009. Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. New Phytologist 181: 199207.
  • Lindroth P, Mopper K. 1979. High performance liquid chromatographic determination of subpicomolar amounts of amino aclds by pre-column fluorescence derivatization with o-phthaldlaldehyde. Analytical Chemistry 51: 16671674.
  • Lunde C, Zygadlo A, Simonsen HT, Nielsen PL, Blennow A, Haldrup A. 2008. Sulfur starvation in rice: the effect on photosynthesis, carbohydrate metabolism, and oxidative stress protective pathways. Physiologia Plantarum 134: 508521.
  • Marschner H. 1995. Mineral nutrition of higher plants. London, UK: Academic Press.
  • Marschner H. 2005. Mineral nutrition of higher plants. London, UK: Elsevier Academic Press.
  • Marschner H, Dell B. 1994. Nutrient-uptake in mycorrhizal symbiosis. Plant and Soil 159: 89102.
  • Nagy R, Drissner D, Amrhein N, Jakobsen I, Bucher M. 2009. Mycorrhizal phosphate uptake pathway in tomato is phosphorus-repressible and transcriptionally regulated. New Phytologist 181: 950959.
  • Newton GL, Dorian R, Fahey RC. 1981. Analysis of biological thiols: derivatization with monobromobimane and separation by reverse-phase high-performance liquid chromatography. Analytical biochemistry 114: 383387.
  • Nikiforova VJ, Bielecka M, Gakiere B, Krueger S, Rinder J, Kempa S, Morcuende R, Scheible WR, Hesse H, Hoefgen R. 2006. Effect of sulfur availability on the integrity of amino acid biosynthesis in plants. Amino Acids 30: 173183.
  • Nikiforova VJ, Gakière B, Kempa S, Adamik M, Willmitzer L, Hesse H, Hoefgen R. 2004. Towards dissecting nutrient metabolism in plants: a systems biology case study on sulphur metabolism. Journal of Experimental Botany 55: 18611870.
  • Nikiforova VJ, Kopka J, Tolstikov V, Fiehn O, Hopkins L, Hawkesford MJ, Hesse H, Hoefgen R. 2005. Systems rebalancing of metabolism in response to sulfur deprivation, as revealed by metabolome analysis of Arabidopsis plants. Plant Physiology 138: 304318.
  • Rhodes LH, Gerdemann JW. 1978a. Hyphal translocation and uptake of sulfur by vesicular-arbuscular mycorrhizae of onion. Soil Biology and Biochemistry 10: 355360.
  • Rhodes LH, Gerdemann JW. 1978b. Influence of phosphorus nutrition on sulfur uptake by vesicular-arbuscular mycorrhizae of onion. Soil Biology and Biochemistry 10: 361364.
  • Rouached H, Secco D, Arpat AB. 2009. Getting the most sulfate from soil: regulation of sulfate uptake transporters in Arabidopsis. Journal of Plant Physiology 166: 893902.
  • Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M et al. 2003. TM4: a free, open-source system for microarray data management and analysis. BioTechniques 34: 374378.
  • Schmalenberger A, Hodge S, Hawkesford MJ, Kertesz MA. 2009. Sulfonate desulfurization in Rhodococcus from wheat rhizosphere communities. FEMS Microbiology Ecology 67: 140150.
  • Smith SE, Dickson S, Morris C, Smith FA. 1994. Transfer of phosphate from fungus to plant in VA mycorrhizas: calculation of the area of symbiotic interface and of fluxes of P from different fungi to Allium porrum L. The New Phytologist 127: 9399.
  • Smith SE, Smith FA, Jakobsen I. 2003. Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiology 133: 1620.
  • Takahashi H, Yamazaki M, Sasakura N, Watanabe A, Leustek T, Engler JA, Engler G, Van Montagu M, Saito K. 1997. Regulation of sulfur assimilation in higher plants: a sulfate transporter induced in sulfate-starved roots plays a central role in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, USA 94: 1110211107.
  • Trouvelot A, Kough J, Gianinazzi-Pearson V. 1986. Mesure du taux de mycorhization VA d'un système radiculaire. Recherche de méthodes d'estimation ayant une signification fonctionnelle. In: Gianinazzi-Pearson V, Gianinazzi S, eds. Physiological and genetical aspects of mycorrhizae. Paris, France: INRA Press, 217221.
  • Varin S, Cliquet J-B, Personeni E, Avice J-C, Lemauviel-Lavenant S. 2010. How does sulphur availability modify N acquisition of white clover (Trifolium repens L.)? Journal of Experimental Botany 61: 225234.
  • Watanabe M, Hubberten H-M, Hoefgen R. 2012. Plant response to mineral ion availability: transcriptome responses to sulfate, selenium and iron. In: De Kok LJ, Tabe L, Tausz M, Hawkesford MJ, Hoefgen R, McManus MT, Norton RM, Rennenberg H, Saito K, Schnug E, eds. Sulfur metabolism in plants. The Netherlands: Springer Science+Business Media Dordrecht, 123134.
  • Watanabe M, Hubberten HM, Saito K, Hoefgen R. 2010. General regulatory patterns of plant mineral nutrient depletion as revealed by serat quadruple mutants disturbed in cysteine synthesis. Molecular Plant 3: 438466.
  • Wulf A, Manthey K, Doll J, Perlick AM, Linke B, Bekel T, Meyer F, Franken P, Küster H, Krajinski F. 2003. Transcriptional changes in response to arbuscular mycorrhiza development in the model plant Medicago truncatula. Molecular Plant-Microbe Interactions 16: 306314.
  • Young ND, Debelle F, Oldroyd GE, Geurts R, Cannon SB, Udvardi MK, Benedito VA, Mayer KF, Gouzy J, Schoof H et al. 2011. The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480: 520524.