SEARCH

SEARCH BY CITATION

References

  • Ainsworth EA, Long SP. 2005. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy. New Phytologist 165: 351371.
  • Ainsworth EA, Rogers A. 2007. The response of photosynthesis and stomatal conductance to rising CO2: mechanisms and environmental interactions. Plant, Cell & Environment 30: 258270.
  • Barbour MM. 2007. Stable oxygen isotope composition of plant tissue: a review. Functional Plant Biology 34: 8394.
  • Barbour MM, Schurr U, Henry BK, Wong SC, Farquhar GD. 2000. Variation in the oxygen isotope ratio of phloem sap sucrose from castor bean. Evidence in support of the Peclet effect. Plant Physiology 123: 671679.
  • Barbour MM, Roden JS, Farquhar GD, Ehleringer JR. 2004. Expressing leaf water and cellulose oxygen isotope ratios as enrichment above source water reveals evidence of a Peclet effect. Oecologia 138: 426435.
  • Battipaglia G, Jaeggi M, Saurer M, Siegwolf RTW, Cotrufo MF. 2008. Climatic sensitivity of delta O-18 in the wood and cellulose of tree rings: results from a mixed stand of Acer pseudoplatanus L. and Fagus sylvatica L. Palaeogeography Palaeoclimatology Palaeoecology 261: 193202.
  • Bernacchi CJ, Calfapietra C, Davey PA, Wittig VE, Scarascia-Mugnozza GE, Raines CA, Long SP. 2003. Photosynthesis and stomatal conductance responses of poplars to free-air CO2 enrichment (PopFACE) during the first growth cycle and immediately following coppice. New Phytologist 159: 609621.
  • Biondi F. 1999. Comparing tree-ring chronologies and repeated timber inventories as forest monitoring tools. Ecological Applications 9: 216227.
  • Boettger T, Haupt M, Knoller K, Weise SM, Waterhouse JS, Rinne KT, Loader NJ, Sonninen E, Jungner H, Masson-Delmotte V et al. 2007. Wood cellulose preparation methods and mass spectrometric analyses of delta C-13, delta O-18, and nonexchangeable delta H-2 values in cellulose, sugar, and starch: an interlaboratory comparison. Analytical Chemistry 79: 46034612.
  • Buchmann N, Kao WY, Ehleringer J. 1997. Influence of stand structure on carbon-13 of vegetation, soils, and canopy air within deciduous and evergreen forests in Utah, United States. Oecologia 110: 109119.
  • Calfapietra C, Tulva I, Eensalu E, Perez M, De Angelis P, Scarascia-Mugnozza G, Kull O. 2005. Canopy profiles of photosynthetic parameters under elevated CO2 and N fertilization in a poplar plantation. Environmental Pollution 137: 525535.
  • Cotrufo MF, Ineson P, Scott A. 1998. Elevated CO2 reduces the nitrogen concentration of plant tissues. Global Change Biology 4: 4354.
  • Domec JC, Palmroth S, Ward E, Maier CA, Therezien M, Oren R. 2009. Acclimation of leaf hydraulic conductance and stomatal conductance of Pinus taeda (loblolly pine) to long-term growth in elevated CO2 (free-air CO2 enrichment) and N-fertilization. Plant, Cell & Environment 32: 15001512.
  • Domec JC, Schafer K, Oren R, Kim HS, McCarthy HR. 2010. Variable conductivity and embolism in roots and branches of four contrasting tree species and their impacts on whole-plant hydraulic performance under future atmospheric CO2 concentration. Tree Physiology 30: 10011015.
  • Ellsworth DS. 1999. CO2 enrichment in a maturing pine forest: are CO2 exchange and water status in the canopy affected? Plant, Cell & Environment 22: 461472.
  • Ellsworth DS, Thomas R, Crous KY, Palmroth S, Ward E, Maier C, Delucia E, Oren R. 2012. Elevated CO2 affects photosynthetic responses in canopy pine and subcanopy deciduous trees over 10 years: a synthesis from Duke FACE. Global Change Biology 18: 223242.
  • Farquhar GD, Ehleringer JR, Hubick KT. 1989. Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 40: 503537.
  • Farquhar GD, Lloyd J, Taylor JA, Flanagan LB, Syvertsen JP, Hubick KT, Wong SC, Ehleringer JR. 1993. Vegetation effects on the isotope composition of oxygen in atmospheric CO2. Nature 363: 439443.
  • Farquhar GD, O'Leary MH, Berry JA. 1982. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Australian Journal of Plant Physiology 9: 121137.
  • Field CB, Jackson RB, Mooney HA. 1995. Stomatal responses to increased CO2 - implications from the plant to the global-scale. Plant, Cell & Environment 18: 12141225.
  • Fritts HC. 1976. Tree rings and climate. London, UK; New York, NY, San Francisco, USA: Academic Press.
  • Gagen M, Finsinger W, Wagner-Cremer F, McCarroll D, Loader NJ, Robertson I, Jalkanen R, Young G, Kirchhefer A. 2011. Evidence of changing intrinsic water-use efficiency under rising atmospheric CO(2) concentrations in Boreal Fennoscandia from subfossil leaves and tree ring delta 13C ratios. Global Change Biology 17: 10641072.
  • Gielen B, Calfapietra C, Lukac M, Wittig VE, De Angelis P, Janssens IA, Moscatelli MC, Grego S, Cotrufo MF, Godbold DL et al. 2005. Net carbon storage in a poplar plantation (POPFACE) after three years of free-air CO2 enrichment. Tree Physiology 25: 13991408.
  • Gunderson CA, Sholtis JD, Wullschleger SD, Tissue DT, Hanson PJ, Norby RJ. 2002. Environmental and stomatal control of photosynthetic enhancement in the canopy of a sweetgum (Liquidambar styraciflua L.) plantation during 3 years of CO2 enrichment. Plant, Cell & Environment 25: 379393.
  • Gunderson CA, Wullschleger SD. 1994. Photosynthetic acclimation in trees to rising atmospheric CO2 - a broader perspective. Photosynthesis Research 39: 369388.
  • Hedges LV, Gurevitch J, Curtis PS. 1999. The meta-analysis of response ratios in experimental ecology. Ecology 80: 11501156.
  • Hendrey GH, Ellsworth DS, Lewin KF, Nagy J. 1999. A free-air enrichment system for exposing tall forest vegetation to elevated atmospheric CO2. Global Change Biology 5: 293309.
  • Herrick JD, Maherali H, Thomas RB. 2004. Reduced stomatal conductance in sweetgum (liquidambar styraciflua) sustained over long-term CO2 enrichment. New Phytologist 162: 387396.
  • Hill SA, Waterhouse JS, Field EM, Switsur VR, AP Rees T. 1995. Rapid recycling of triose phosphates in oak stem tissue. Plant, Cell & Environment 18: 931936.
  • Jackson RB, Sala OE, Field CB, Mooney HA. 1994. CO2 alters water-use, carbon gain, and yield for the dominant species in a natural grassland. Oecologia 98: 257262.
  • Keel SG, Siegwolf RTW, Korner C. 2006. Canopy CO2 enrichment permits tracing the fate of recently assimilated carbon in a mature deciduous forest. New Phytologist 172: 319329.
  • Kleinbaum DG, Kupper LL, Muller KE, Nizam A. 2008. Applied regression analysis and multivariable methods. Belmont, CA, USA: Thomson Higher Education.
  • Korner C. 2006. Plant CO2 responses: an issue of definition, time and resource supply. New Phytologist 172: 393411.
  • Kubiske ME, Quinn VS, Heilman WE, McDonald EP, Marquardt PE, Teclaw RM, Friend AL, Karnosky DF. 2006. Interannual climatic variation mediates elevated CO2 and O-3 effects on forest growth. Global Change Biology 12: 10541068.
  • Leakey ADB, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR. 2009. Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from face. Journal of Experimental Botany 60: 28592876.
  • Liberloo M, Calfapietra C, Lukac M, Godbold D, Luos ZB, Polle A, Hoosbeek MR, Kull O, Marek M, Raines C et al. 2006. Woody biomass production during the second rotation of a bio-energy populus plantation increases in a future high CO2 world. Global Change Biology 12: 10941106.
  • Liberloo M, Dillen SY, Calfapietra C, Marinari S, Bin Luo Z, De Angelis P, Ceulemans R. 2005. Elevated CO2 concentration, fertilization and their interaction: growth stimulation in a short-rotation poplar coppice (EUROFACE). Tree Physiology 25: 179189.
  • Linares JC, Camarero JJ. 2012. From pattern to process: linking intrinsic water-use efficiency to drought-induced forest decline. Global Change Biology 18: 10001015.
  • Lipp J, Trimborn P, Fritz P, Moser H, Becker B, Frenzel B. 1991. Stable isotopes in tree-ring cellulose and climatic-change. Tellus Series B – Chemical and Physical Meteorology 43: 322330.
  • Maier CA, Johnsen KH, Butnor J, Kress LW, Anderson PH. 2002. Branch growth and gas exchange in 13-year-old loblolly pine (Pinus taeda) trees in response to elevated carbon dioxide concentration and fertilization. Tree Physiology 22: 10931106.
  • McCarroll D, Loader NJ. 2004. Stable isotopes in tree rings. Quaternary Science Reviews 23: 771801.
  • McCarthy HR, Oren R, Finzi AC, Ellsworth DS, Kim HS, Johnsen KH, Millar B. 2007. Temporal dynamics and spatial variability in the enhancement of canopy leaf area under elevated atmospheric CO2. Global Change Biology 13: 24792497.
  • McCarthy HR, Oren R, Johnsen KH, Gallet-Budynek A, Pritchard SG, Cook CW, LaDeau SL, Jackson RB, Finzi AC. 2010. Reassessment of plant carbon dynamics at the Duke free-air CO2 enrichment site: interactions of atmospheric CO2 with nitrogen and water availability over stand development. New Phytologist 185: 514528.
  • Miglietta F, Peressotti A, Vaccari FP, Zaldei A, deAngelis P, Scarascia-Mugnozza G. 2001. Free-air CO2 enrichment (FACE) of a poplar plantation: the POPFACE fumigation system. New Phytologist 150: 465476.
  • Monserud RA, Marshall JD. 2001. Time-series analysis of delta C-13 from tree rings. I. Time trends and autocorrelation. Tree Physiology 21: 10871102.
  • Norby RJ, Sholtis JD, Gunderson CA, Jawdy SS. 2003. Leaf dynamics of a deciduous forest canopy: no response to elevated CO2. Oecologia 136: 574584.
  • Norby RJ, Todd DE, Fults J, Johnson DW. 2001. Allometric determination of tree growth in a CO2-enriched sweetgum stand. New Phytologist 150: 477487.
  • Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE. 2010. Co(2) enhancement of forest productivity constrained by limited nitrogen availability. Proceedings of the National Academy of Sciences, USA 107: 1936819373.
  • Norby RJ, Zak DR. 2011 Ecological lessons from free-air CO2 enrichment (face) experiments. In: Futuyma DJ, Shaffer HB, Simberloff D, eds. Annual review of ecology, evolution, and systematics, vol 42. Palo Alto, CA, USA: Annual Reviews, 181203.
  • Pataki DE, Ellsworth DS, Evans RD, Gonzalez-Meler M, King J, Leavitt SW, Lin GH, Matamala R, Pendall E, Siegwolf R et al. 2003. Tracing changes in ecosystem function under elevated carbon dioxide conditions. BioScience 53: 805818.
  • Pataki DE, Oren R, Tissue DT. 1998. Elevated carbon dioxide does not affect average canopy stomatal conductance of Pinus taeda L. Oecologia 117: 4752.
  • Penuelas J, Canadell JG, Ogaya R. 2011. Increased water-use efficiency during the 20th century did not translate into enhanced tree growth. Global Ecology and Biogeography 20: 597608.
  • Picon C, Ferhi A, Guehl JM. 1997. Concentration and delta C-13 of leaf carbohydrates in relation to gas exchange in quercus robur under elevated CO2 and drought. Journal of Experimental Botany 48: 15471556.
  • Riggs JS, Tharp M, Norby R. 2003. ORNL FACE weather data [WWW document] URL http://cdiac.ornl.gov.programs/FACE/ornldata/weatherfiles.html Carbon dioxide Information Analysis Center, Oak Ridge, Tenn [accessed 2 June 2005].
  • Roden JS, Ehleringer JR. 2000. Hydrogen and oxygen isotope ratios of tree ring cellulose for field-grown riparian trees. Oecologia 123: 481489.
  • Saurer M, Siegwolf RTW, Schweingruber FH. 2004. Carbon isotope discrimination indicates improving water-use efficiency of trees in northern Eurasia over the last 100 years. Global Change Biology 10: 21092120.
  • Schafer KVR, Oren R, Lai CT, Katul GG. 2002. Hydrologic balance in an intact temperate forest ecosystem under ambient and elevated atmospheric CO2 concentration. Global Change Biology 8: 895911.
  • Scheidegger Y, Saurer M, Bahn M, Siegwolf R. 2000. Linking stable oxygen and carbon isotopes with stomatal conductance and photosynthetic capacity: a conceptual model. Oecologia 125: 350357.
  • Schweingruber FH. 1988. Tree rings: basics and applications of dendrochronology. Dordrecht, the Netherlands: Kluwer Academic Publishers.
  • Schweingruber FH. 1996. Dendrochronology – an extremely exact measuring tool for the study of environmental and human history. Naturwissenschaften 83: 370377.
  • Seibt U, Rajabi A, Griffiths H, Berry JA. 2008. Carbon isotopes and water use efficiency: sense and sensitivity. Oecologia 155: 441454.
  • Sholtis JD, Gunderson CA, Norby RJ, Tissue DT. 2004. Persistent stimulation of photosynthesis by elevated CO2 in a sweetgum (Liquidambar styraciflua) forest stand. New Phytologist 162: 343354.
  • Springer CJ, Thomas RB. 2007. Photosynthetic responses of forest understory tree species to long-term exposure to elevated carbon dioxide concentration at the Duke Forest FACE experiment. Tree Physiology 27: 2532.
  • Tognetti R, Cherubini P, Innes JL. 2000. Comparative stem-growth rates of Mediterranean trees under background and naturally enhanced ambient CO2 concentrations. New Phytologist 146: 5974.
  • Tricker PJ, Trewin H, Kull O, Clarkson GJJ, Eensalu E, Tallis MJ, Colella A, Doncaster CP, Sabatti M, Taylor G. 2005. Stomatal conductance and not stomatal density determines the long-term reduction in leaf transpiration of poplar in elevated CO2. Oecologia 143: 652660.
  • Warren CR, McGrath JF, Adams MA. 2001. Water availability and carbon isotope discrimination in conifers. Oecologia 127: 476486.
  • Warren JM, Norby RJ, Wullschleger SD. 2011a. Elevated CO2 enhances leaf senescence during extreme drought in a temperate forest. Tree Physiology 31: 117130.
  • Warren JM, Poetzelsberger E, Wullschleger SD, Thornton PE, Hasenauer H, Norby RJ. 2011b. Ecohydrologic impact of reduced stomatal conductance in forests exposed to elevated CO2. Ecohydrology 4: 196210.
  • Watanabe Y, Satomura T, Sasa K, Funada R, Koike T. 2010. Differential anatomical responses to elevated CO2 in saplings of four hardwood species. Plant, Cell & Environment 33: 11011111.
  • Wullschleger SD, Tschaplinski TJ, Norby RJ. 2002. Plant water relations at elevated CO2 – implications for water-limited environments. Plant, Cell & Environment 25: 319331.
  • Yazaki K, Muruyama Y, Mori S, Koibe T, Funada R. 2005 Effect of elevated carbon dioxide concentration on wood structure and formation in trees. In: Omasa K, Nouchi I, De Kok LD, eds. Plant responses to air pollution and global change. Tokyo, Japan: Sprinter-Verlag, 8997.