SEARCH

SEARCH BY CITATION

References

  • Assaad FF, Qiu J-L, Youngs H, Ehrhardt D, Zimmerli L, Kalde M, Wanner G, Peck SC, Edwards H, Ramonell K, et al. 2004. The PEN1 syntaxin defines a novel cellular compartment upon fungal attack and is required for the timely assembly of papillae. Molecular Biology of the Cell 15: 51185129.
  • Bai G-H, Plattner R, Desjardins A, Kolb F, McIntosh RA. 2001. Resistance to Fusarium head blight and deoxynivalenol accumulation in wheat. Plant Breeding 120: 16.
  • Bednarek P, Pislewska-Bednarek M, Svatos A, Schneider B, Doubsky J, Mansurova M, Humphry M, Consonni C, Panstruga R, Sanchez-Vallet A, et al. 2009. A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science 323: 101106.
  • Bhat RA, Miklis M, Schmelzer E, Schulze-Lefert P, Panstruga R. 2005. Recruitment and interaction dynamics of plant penetration resistance components in a plasma membrane microdomain. Proceedings of the National Academy of Sciences, USA 102: 31353140.
  • Böhnert HU, Fudal I, Dioh W. 2004. A putative polyketide synthase/peptide synthetase from Magnaporthe grisea signals pathogen attack to resistant rice. Plant Cell 16: 24992513.
  • Chapple CC, Vogt T, Ellis BE, Somerville CR. 1992. An Arabidopsis mutant defective in the general phenylpropanoid pathway. Plant Cell 4: 14131424.
  • Chomczynski P, Sacchi N. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Analytical Biochemistry 162: 156159.
  • Clay NK, Adio AM, Denoux C, Jander G, Ausubel FM. 2009. Glucosinolate metabolites required for an Arabidopsis innate immune response. Science 323: 95101.
  • Clough SJ, Bent AF. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal 16: 735743.
  • Collins NC, Thordal-Christensen H, Lipka V, Bau S, Kombrink E, Qiu J-L, Huckelhoven R, Stein M, Freialdenhoven A, Somerville SC, et al. 2003. SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425: 973977.
  • Desjardins AE, Proctor RH, Bai G, McCormick SP, Shaner G, Buechley G, Hohn TM. 1996. Reduced virulence of trichothecene antibiotic-nonproducing mutants of Gibberella zeae in wheat field tests. Molecular Plant–Microbe Interactions 9: 775781.
  • Edwards K, Johnstone C, Thompson C. 1991. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Research 19: 1349.
  • Fraissinet-Tachet L, Baltz R, Chong J, Kauffmann S, Fritig B, Saindrenan P. 1998. Two tobacco genes induced by infection, elicitor and salicylic acid encode glucosyltransferases acting on phenylpropanoids and benzoic acid derivatives, including salicylic acid. FEBS Letters 437: 319323.
  • Fraser CM, Chapple C. 2011. The phenylpropanoid pathway in Arabidopsis. The Arabidopsis Book 9: e0152.
  • Fraser CM, Thompson MG, Shirley AM, Ralph J, Schoenherr JA, Sinlapadech T, Hall MC, Chapple C. 2007. Related Arabidopsis serine carboxypeptidase-like sinapoylglucose acyltransferases display distinct but overlapping substrate specificities. Plant Physiology 144: 19861999.
  • Gachon C, Baltz R, Saindrenan P. 2004. Over-expression of a scopoletin glucosyltransferase in Nicotiana tabacum leads to precocious lesion formation during the hypersensitive response to tobacco mosaic virus but does not affect virus resistance. Plant Molecular Biology 54: 137146.
  • Garcion C, Baltensperger R, Fournier T, Pasquier J, Schnetzer M-A, Gabriel J-P, Métraux J-P. 2006. FiRe and microarrays: a fast answer to burning questions. Trends in Plant Science 11: 320322.
  • Goellner K, Loehrer M, Langenbach C, Conrath U, Koch E, Schaffrath U. 2010. Pathogen profile: Phakopsora pachyrhizi, the causal agent of Asian soybean rust. Molecular Plant Pathology 11: 169177.
  • Hagemeier J, Schneider B, Oldham NJ, Hahlbrock K. 2001. Accumulation of soluble and wall-bound indolic metabolites in Arabidopsis thaliana leaves infected with virulent or avirulent Pseudomonas syringae pathovar tomato strains. Proceedings of the National Academy of Sciences, USA 98: 753758.
  • Hahlbrock K, Scheel D. 1989. Physiology and molecular biology of phenylpropanoid metabolism. Annual Review of Plant Physiology and Plant Molecular Biology 40: 347369.
  • Heath MC. 2000. Nonhost resistance and nonspecific plant defenses. Current Opinion in Plant Biology 3: 315319.
  • Hemm MR, Ruegger MO, Chapple C. 2003. The Arabidopsis ref2 mutant is defective in the gene encoding CYP83A1 and shows both phenylpropanoid and glucosinolate phenotypes. Plant Cell 15: 179194.
  • Horvath DM, Chua N-H. 1996. Identification of an immediate-early salicylic acid-inducible tobacco gene and characterization of induction by other compounds. Plant Molecular Biology 31: 10611071.
  • Langlois-Meurinne M, Gachon CMM, Saindrenan P. 2005. Pathogen-responsive expression of glycosyltransferase genes UGT73B3 and UGT73B5 is necessary for resistance to Pseudomonas syringae pv tomato. Plant Physiology 139: 18901901.
  • Lehfeldt C, Shirley AM, Meyer K, Ruegger MO, Cusumano JC, Viitanen PV, Strack D, Chapple C. 2000. Cloning of the SNG1 gene of Arabidopsis reveals a role for a serine carboxypeptidase-like protein as an acyltransferase in secondary metabolism. Plant Cell 12: 12951306.
  • Lemmens M, Scholz U, Berthiller F, Dall'Asta C, Koutnik A, Schuhmacher R, Adam G, Buerstmayr H, Mesterházy A, Krska R, et al. 2005. The ability to detoxify the mycotoxin deoxynivalenol colocalizes with a major quantitative trait locus for Fusarium head blight resistance in wheat. Molecular Plant–Microbe Interactions 18: 13181324.
  • Lim EK, Li Y, Parr A, Jackson R, Ashford DA, Bowles DJ. 2001. Identification of glucosyltransferase genes involved in sinapate metabolism and lignin synthesis in Arabidopsis. Journal of Biological Chemistry 276: 43444349.
  • Lipka U, Fuchs R, Lipka V. 2008. Arabidopsis non-host resistance to powdery mildews. Current Opinion in Plant Biology 11: 404411.
  • Lipka V, Dittgen J, Bednarek P, Bhat R, Wiermer M, Stein M, Landtag J, Brandt W, Rosahl S, Scheel D, et al. 2005. Pre- and postinvasion defenses both contribute to nonhost resistance in Arabidopsis. Science 310: 11801183.
  • Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25: 402408.
  • Loehrer M, Langenbach C, Goellner K, Conrath U, Schaffrath U. 2008. Characterization of nonhost resistance of Arabidopsis to the Asian soybean rust. Molecular Plant–Microbe Interactions 21: 14211430.
  • Matros A, Mock H-P. 2004. Ectopic expression of a UDP-glucose: phenylpropanoid glucosyltransferase leads to increased resistance of transgenic tobacco plants against infection with potato virus Y. Plant and Cell Physiology 45: 11851193.
  • Mazel A, Levine A. 2002. Induction of glucosyltransferase transcription and activity during superoxide-dependent cell death in Arabidopsis plants. Plant Physiology and Biochemistry 40: 133140.
  • Mellersh DG, Heath MC. 2003. An investigation into the involvement of defense signaling pathways in components of the nonhost resistance of Arabidopsis thaliana to rust fungi also reveals a model system for studying rust fungal compatibility. Molecular Plant–Microbe Interactions 16: 398404.
  • Meißner D, Albert A, Bottcher C, Strack D, Milkowski C. 2008. The role of UDP-glucose:hydroxycinnamate glucosyltransferases in phenylpropanoid metabolism and the response to UV-B radiation in Arabidopsis thaliana. Planta 228: 663674.
  • Messner B, Thulke O, Schäffner AR. 2003. Arabidopsis glucosyltransferases with activities toward both endogenous and xenobiotic substrates. Planta 217: 138146.
  • Milkowski C, Baumert A, Strack D. 2000. Identification of four Arabidopsis genes encoding hydroxycinnamate glucosyltransferases. Zeitschrift für Naturforschung 47c: 183184.
  • Mock H-P, Strack D. 1993. Energetics of the uridine 5'-diphosphoglucose:hydroxycinnamic acid acyl-glucosyltransferase reaction. Phytochemistry 32: 575579.
  • Nakao M, Nakamura R, Kita K, Inukai R, Ishikawa A. 2011. Non-host resistance to penetration and hyphal growth of Magnaporthe oryzae in Arabidopsis. Scientific Reports 1: 171.
  • Nishimura MT, Stein M, Hou B-H, Vogel JP, Edwards H, Somerville SC. 2003. Loss of a callose synthase results in salicylic acid-dependent disease resistance. Science 301: 969972.
  • O'Donnell PJ, Truesdale MR, Calvert CM, Dorans A, Roberts MR, Bowles DJ. 1998. A novel tomato gene that rapidly responds to wound- and pathogen-related signals. Plant Journal 14: 137142.
  • Oppenheimer DG, Herman PL, Sivakumaran S, Esch J, Marks MD. 1991. A MYB gene required for leaf trichome differentiation in Arabidopsis is expressed in stipules. Cell 67: 483493.
  • Poppenberger B, Berthiller F, Lucyshyn D, Sieberer T, Schuhmacher R, Krska R, Kuchler K, Glössl J, Luschnig C, Adam G. 2003. Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana. Journal of Biological Chemistry 278: 4790547914.
  • Ruegger M, Chapple C. 2001. Mutations that reduce sinapoylmalate accumulation in Arabidopsis thaliana define loci with diverse roles in phenylpropanoid metabolism. Genetics 159: 17411749.
  • Ruegger M, Meyer K, Cusumano JC, Chapple C. 1999. Regulation of ferulate-5-hydroxylase expression in Arabidopsis in the context of sinapate ester biosynthesis. Plant Physiology 119: 101110.
  • Shafiei R, Hang C, Kang J-G, Loake GJ. 2007. Identification of loci controlling non-host disease resistance in Arabidopsis against the leaf rust pathogen Puccinia triticina. Molecular Plant Pathology 8: 773784.
  • Shirley AM, McMichael CM, Chapple C. 2001. The sng2 mutant of Arabidopsis is defective in the gene encoding the serine carboxypeptidase-like protein sinapoylglucose:choline sinapoyltransferase. Plant Journal 28: 8394.
  • Sinlapadech T, Stout J, Ruegger MO, Deak M, Chapple C. 2007. The hyper-fluorescent trichome phenotype of the brt1 mutant of Arabidopsis is the result of a defect in a sinapic acid:UDPG glucosyltransferase. Plant Journal 49: 655668.
  • Stein M, Dittgen J, Sánchez-Rodríguez C, Hou B-H, Molina A, Schulze-Lefert P, Lipka V, Somerville S. 2006. Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration. The Plant Cell 18: 731746.
  • Stokstad E. 2004. Agriculture. Plant pathologists gear up for battle with dread fungus. Science 306: 16721673.
  • Strack D. 1980. Enzymatic synthesis of 1-sinapoylglucose from free sinapic acid and UDP-glucose by a cell-free system from Raphanus sativus seedlings. Zeitschrift für Naturforschung 35C: 204208.
  • Strack D. 1982. Development of I-O-sinapoyl-P-D-glucose:r-malate sinapoyltransferase activity in cotyledons of red radish (Raphanus sativus L. var. sativus). Planta 155: 3136.
  • Strack D. 1983. Enzymatic synthesis of sinapine from 1-O-sinapoyl-P-D-glucose and choline by a cell-free system from developing seeds of red radish (Raphanus sativus L. var. sativus). Zeitschrift für Naturforschung 38c: 2127.
  • Udvardi MK, Czechowski T, Scheible W-R. 2008. Eleven golden rules of quantitative RT-PCR. Plant Cell 20: 17361737.
  • Wen Y, Wang W, Feng J, Luo M-C, Tsuda K, Katagiri F, Bauchan G, Xiao S. 2011. Identification and utilization of a sow thistle powdery mildew as a poorly adapted pathogen to dissect post-invasion non-host resistance mechanisms in Arabidopsis. Journal of Experimental Botany 62: 21172129.