SEARCH

SEARCH BY CITATION

References

  • Ameline-Torregrosa C, Cazaux M, Danesh D, Chardon F, Cannon SB, Esquerre-Tugaye M-T, Dumas B, Young ND, Samac DA, Huguet T et al. 2008. Genetic dissection of resistance to anthracnose and powdery mildew in Medicago truncatula. Molecular Plant–Microbe Interactions 21: 6169.
  • Andriankaja A, Boisson-Dernier A, Frances L, Sauviac L, Jauneau A, Barker DG, de Carvalho-Niebel F. 2007. AP2-ERF transcription factors mediate Nod factor dependent Mt ENOD11 activation in root hairs via a novel cis-regulatory motif. The Plant Cell 19: 28662885.
  • Antolin-Llovera M, Ried MK, Binder A, Parniske M. 2012. Receptor kinase signaling pathways in plant–microbe interactions. Annual Review of Phytopathology 50: 451473.
  • Arrighi J-F, Barre A, Ben Amor B, Bersoult A, Soriano LC, Mirabella R, de Carvalho-Niebel F, Journet E-P, Gherardi M, Huguet T et al. 2006. The Medicago truncatula lysin motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes. Plant Physiology 142: 265279.
  • Ashtamker C, Kiss V, Sagi M, Davydov O, Fluhr R. 2007. Diverse subcellular locations of cryptogein-induced reactive oxygen species production in tobacco Bright Yellow-2 cells. Plant Physiology 143: 18171826.
  • Auriac MC, Timmers AC. 2007. Nodulation studies in the model legume Medicago truncatula: advantages of using the constitutive EF1alpha promoter and limitations in detecting fluorescent reporter proteins in nodule tissues. Molecular Plant–Microbe Interactions 20: 10401047.
  • Badreddine I, Lafitte C, Heux L, Skandalis N, Spanou Z, Martinez Y, Esquerré-Tugayé M-T, Bulone V, Dumas B, Bottin A. 2008. Cell wall chitosaccharides are essential components and exposed patterns of the phytopathogenic oomycete Aphanomyces euteiches. Eukaryotic Cell 7: 19801993.
  • Barrett T, Edgar R. 2006. Gene expression omnibus: microarray data storage, submission, retrieval, and analysis. DNA Microarrays, Part B: Databases and Statistics 411: 352369.
  • Bécard G, Fortin JA. 1988. Early events of vesicular–arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytologist 108: 211218.
  • Ben Amor B, Shaw SL, Oldroyd GE, Maillet F, Penmetsa RV, Cook D, Long SR, Denarie J, Gough C. 2003. The NFP locus of Medicago truncatula controls an early step of Nod factor signal transduction upstream of a rapid calcium flux and root hair deformation. Plant Journal 34: 495506.
  • Bensmihen S, de Billy F, Gough C. 2011. Contribution of NFP LysM domains to the recognition of Nod factors during the Medicago truncatula/Sinorhizobium meliloti symbiosis. PLoS ONE 6: e26114.
  • Bonfante P, Genre A. 2010. Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nature Communications 1: 48.
  • Broghammer A, Krusell L, Blaise M, Sauer J, Sullivan JT, Maolanon N, Vinther M, Lorentzen A, Madsen EB, Jensen KJ et al. 2012. Legume receptors perceive the rhizobial lipochitin oligosaccharide signal molecules by direct binding. Proceedings of the National Academy of Sciences, USA 109: 1385913864.
  • Brunaud V, Gagnot S, Tamby JP, Martin-Magniette ML, Bitton F, Taconnat L, Balzergue S, Aubourg S, Renou JP, Lecharny A. 2008. CATdb: a public access to Arabidopsis transcriptome data from the URGV-CATMA platform. Nucleic Acids Research 36: D986D990.
  • Catoira R, Timmers AC, Maillet F, Galera C, Penmetsa RV, Cook D, Denarie J, Gough C. 2001. The HCL gene of Medicago truncatula controls Rhizobium-induced root hair curling. Development 128: 15071518.
  • Chabaud M, Larsonneau C, Marmouget C, Huguet T. 1996. Transformation of Barrel medic (Medicago truncatula Gaertn.) by Agrobacterium tumefaciens and regeneration via somatic embryogenesis of transgenic plants with the MtENOD12 nodulin promoter fused to the gus reporter gene. Plant Cell Reports 15: 305310.
  • Chinchilla D, Shan L, He P, de Vries S, Kemmerling B. 2009. One for all: the receptor-associated kinase BAK1. Trends in Plant Science 14: 535541.
  • Colditz F, Braun H-P, Jacquet C, Niehaus K, Krajinski F. 2005. Proteomic profiling unravels insights into the molecular background underlying increased Aphanomyces euteiches tolerance of Medicago truncatula. Plant Molecular Biology 59: 387406.
  • Czaja LF, Hogekamp C, Lamm P, Maillet F, Martinez EA, Samain E, Denarie J, Kuster H, Hohnjec N. 2012. Transcriptional responses toward diffusible signals from symbiotic microbes reveal MtNFP- and MtDMI3-dependent reprogramming of host gene expression by arbuscular mycorrhizal fungal lipochitooligosaccharides. Plant Physiology 159: 16711685.
  • Day RB, Okada M, Ito Y, Tsukada K, Zaghouani H, Shibuya N, Stacey G. 2001. Binding site for chitin oligosaccharides in the soybean plasma membrane. Plant Physiology 126: 11621173.
  • Dénarié J, Cullimore J. 1993. Lipo-oligosaccharide nodulation factors: a new class of signaling molecules mediating recognition and morphogenesis. Cell 74: 951954.
  • Ding B, Bellizzi Mdel R, Ning Y, Meyers BC, Wang GL. 2012. HDT701, a histone H4 deacetylase, negatively regulates plant innate immunity by modulating histone H4 acetylation of defense-related genes in rice. The Plant Cell 24: 37833794.
  • Djébali N, Jauneau A, Ameline-Torregrosa C, Chardon F, Jaulneau V, Mathe C, Bottin A, Cazaux M, Pilet-Nayel ML, Baranger A et al. 2009. Partial resistance of Medicago truncatula to Aphanomyces euteiches is associated with protection of the root stele and is controlled by a major QTL rich in proteasome-related genes. Molecular Plant–Microbe Interactions 22: 10431055.
  • Djébali N, Mhadhbi H, Lafitte C, Dumas B, Esquerré-Tugayé M-T, Aouani M, Jacquet C. 2011. Hydrogen peroxide scavenging mechanisms are components of Medicago truncatula partial resistance to Aphanomyces euteiches. European Journal of Plant Pathology 131: 559571.
  • Gaulin E, Jacquet C, Bottin A, Dumas B. 2007. Root rot disease of legumes caused by Aphanomyces euteiches. Molecular Plant Pathology 8: 539548.
  • Genre A, Ortu G, Bertoldo C, Martino E, Bonfante P. 2009. Biotic and abiotic stimulation of root epidermal cells reveals common and specific responses to arbuscular mycorrhizal fungi. Plant Physiology 149: 14241434.
  • Genre A, Chabaud M, balzergue C, Puech-Pagès V, Novero M, Rey T, Fournier J, Rochange S, Bécard G, Bonfante P et al. 2013. Short-chain chitin oligomers from arbuscular mucorrhizal fungi trigger nuclear Ca2+ spiking in Medicago truncatula roots and their production are enhanced by strigolactone. New Phytologist. doi: 10.1111/nph.12146.
  • Gough C, Cullimore J. 2011. Lipo-chitooligosaccharide signaling in endosymbiotic plant–microbe interactions. Molecular Plant–Microbe Interactions 24: 867878.
  • Gust AA, Willmann R, Desaki Y, Grabherr HM, Nurnberger T. 2012. Plant LysM proteins: modules mediating symbiosis and immunity. Trends in Plant Science 17: 495502.
  • Haney CH, Long SR. 2010. Plant flotillins are required for infection by nitrogen-fixing bacteria. Proceedings of the National Academy of Sciences, USA 107: 478483.
  • Hirsch S, Kim J, Munoz A, Heckmann AB, Downie JA, Oldroyd GE. 2009. GRAS proteins form a DNA binding complex to induce gene expression during nodulation signaling in Medicago truncatula. The Plant Cell 21: 545557.
  • Huckelhoven R. 2007. Cell wall-associated mechanisms of disease resistance and susceptibility. Annual Review of Phytopathology 45: 101127.
  • Jones JDG, Dangl JL. 2006. The plant immune system. Nature 444: 323329.
  • Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C, Dohmae N, Takio K, Minami E, Shibuya N. 2006. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proceedings of the National Academy of Sciences, USA 103: 1108611091.
  • Kiirika LM, Bergmann HF, Schikowsky C, Wimmer D, Korte J, Schmitz U, Niehaus K, Colditz F. 2012. Silencing of the Rac1 GTPase MtROP9 in Medicago truncatula stimulates early mycorrhizal and oomycete root colonizations but negatively affects rhizobial infection. Plant Physiology 159: 501516.
  • Kiss E, Huguet T, Poinsot V, Batut J. 2004. The typA gene is required for stress adaptation as well as for symbiosis of Sinorhizobium meliloti 1021 with certain Medicago truncatula lines. Molecular Plant-Microbe Interactions 17: 235244.
  • Klaus-Heisen D, Nurisso A, Pietraszewska-Bogiel A, Mbengue M, Camut S, Timmers T, Pichereaux C, Rossignol M, Gadella TWJ, Imberty A et al. 2011. Structure–function similarities between a plant receptor-like kinase and the human interleukin-1 receptor-associated kinase-4. Journal of Biological Chemistry 286: 1120211210.
  • Kloppholz S, Kuhn H, Requena N. 2011. A secreted fungal effector of glomus intraradices promotes symbiotic biotrophy. Current Biology 21: 12041209.
  • Kombrink A, Sanchez-Vallet A, Thomma BP. 2011. The role of chitin detection in plant–pathogen interactions. Microbes and Infection 13: 11681176.
  • Limpens E, Franken C, Smit P, Willemse J, Bisseling T, Geurts R. 2003. LysM domain receptor kinases regulating rhizobial Nod factor-induced infection. Science 302: 630633.
  • Liu B, Li JF, Ao Y, Qu J, Li Z, Su J, Zhang Y, Liu J, Feng D, Qi K et al. 2012a. Lysin motif-containing proteins LYP4 and LYP6 play dual roles in peptidoglycan and chitin perception in rice innate immunity. The Plant Cell 24: 34063419.
  • Liu T, Liu Z, Song C, Hu Y, Han Z, She J, Fan F, Wang J, Jin C, Chang J et al. 2012b. Chitin-induced dimerization activates a plant immune receptor. Science 336: 11601164.
  • Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−ΔΔCT) Method. Methods 25: 402408.
  • Maillet F, Poinsot V, Andre O, Puech-Pages V, Haouy A, Gueunier M, Cromer L, Giraudet D, Formey D, Niebel A et al. 2011. Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469: 5863.
  • Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N. 2007. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proceedings of the National Academy of Sciences, USA 104: 1961319618.
  • Mizutani M, Ohta D. 2010. Diversification of P450 genes during land plant evolution. Annual Review of Plant Biology 61: 291315.
  • Monaghan J, Zipfel C. 2012. Plant pattern recognition receptor complexes at the plasma membrane. Current Opinion in Plant Biology 15: 349357.
  • Moussart A, Onfroy C, Lesne A, Esquibet M, Grenier E, Tivoli B. 2007. Host status and reaction of Medicago truncatula accessions to infection by three major pathogens of pea (Pisum sativum) and alfalfa (Medicago sativa). European Journal of Plant Pathology 117: 5769.
  • Nakagawa T, Kaku H, Shimoda Y, Sugiyama A, Shimamura M, Takanashi K, Yazaki K, Aoki T, Shibuya N, Kouchi H. 2011. From defense to symbiosis: limited alterations in the kinase domain of LysM receptor-like kinases are crucial for evolution of legume–Rhizobium symbiosis. Plant Journal 65: 169180.
  • Nars A, Rey T, Lafitte C, Vergnes S, Amatya S, Jacquet C, Dumas B, Thibaudeau C, Heux L, Bottin A et al. 2013. An experimental system to study responses of Medicago truncatula roots to chitin oligomers of high degree of polymerization and other microbial elicitors. Plant Cell Reports. doi: 10.1007/s00299-012-1380-3.
  • Nielsen M, Thordal-Christensen H. 2012. Recycling of Arabidopsis plasma membrane PEN1 syntaxin. Plant Signaling and Behavior 7: 15411543.
  • Olah B, Briere C, Becard G, Denarie J, Gough C. 2005. Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway. Plant Journal 44: 195207.
  • Oldroyd GED, Downie JA. 2008. Coordinating nodule morphogenesis with rhizobial infection in legumes. Annual Review of Plant Biology 59: 519546.
  • Oldroyd GED, Murray JD, Poole PS, Downie JA. 2011. The rules of engagement in the legume–rhizobial symbiosis. Annual Review of Genetics 45: 119144.
  • Petutschnig EK, Jones AM, Serazetdinova L, Lipka U, Lipka V. 2010. The LysM-RLK CERK1 is a major chitin binding protein in Arabidopsis thaliana and subject to chitin-induced phosphorylation. Journal of Biological Chemistry 285: 2890228911.
  • Shimizu T, Nakano T, Takamizawa D, Desaki Y, Ishii-Minami N, Nishizawa Y, Minami E, Okada K, Yamane H, Kaku H et al. 2010. Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant Journal 64: 204214.
  • Smit P, Limpens E, Geurts R, Fedorova E, Dolgikh E, Gough C, Bisseling T. 2007. Medicago LYK3, an entry receptor in rhizobial nodulation factor signaling. Plant Physiology 145: 183191.
  • Tivoli B, Baranger A, Sivasithamparam K, Barbetti MJ. 2006. Annual Medicago: from a model crop challenged by a spectrum of necrotrophic pathogens to a model plant to explore the nature of disease resistance. Annals of Botany 98: 11171128.
  • Turner M, Jauneau A, Genin S, Tavella M-J, Vailleau F, Gentzbittel L, Jardinaud M-F. 2009. Dissection of bacterial wilt on Medicago truncatula revealed two type III secretion system effectors acting on root infection process and disease development. Plant Physiology 150: 17131722.
  • Uppalapati SR, Marek SM, Lee HK, Nakashima J, Tang Y, Sledge MK, Dixon RA, Mysore KS. 2009. Global gene expression profiling during Medicago truncatulaPhymatotrichopsis omnivora interaction reveals a role for jasmonic acid, ethylene, and the flavonoid pathway in disease development. Molecular Plant-Microbe Interactions 22: 717.
  • Willmann R, Lajunen HM, Erbs G, Newman M-A, Kolb D, Tsuda K, Katagiri F, Fliegmann J, Bono J-J, Cullimore JV et al. 2011. Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection. Proceedings of the National Academy of Sciences, USA 108: 1982419829.
  • Zipfel C. 2009. Early molecular events in PAMP-triggered immunity. Current Opinion in Plant Biology 12: 414420.