SEARCH

SEARCH BY CITATION

References

  • Affek HP, Yakir D. 2002. Protection by isoprene against singlet oxygen in leaves. Plant Physiology 129: 269277.
  • Affek HP, Yakir D. 2003. Natural abundance carbon isotope composition of isoprene reflects incomplete coupling between isoprene synthesis and photosynthetic carbon flow. Plant Physiology 131: 17271736.
  • Arneth A, Niinemets Ü, Pressley S, Bäck J, Hari P, Karl T, Noe S, Prentice IC, Serça D, Hickler T et al. 2007. Process-based estimates of terrestrial ecosystem isoprene emissions: incorporating the effects of a direct CO2-isoprene interaction. Atmospheric Chemistry and Physics 7: 3153.
  • Behnke K, Ehlting B, Teuber M, Bauerfeind M, Louis S, Hänsch R, Polle A, Bohlmann J, Schnitzler J-P. 2007. Transgenic, non-isoprene emitting poplars don't like it hot. Plant Journal 51: 485499.
  • von Bertalanffy L. 1957. Quantitative laws in metabolism and growth. The Quarterly Review of Biology 32: 217231.
  • Calfapietra C, Scarascia Mugnozza G, Karnosky DF, Loreto F, Sharkey TD. 2008. Isoprene emission rates under elevated CO2 and O3 in two field-grown aspen clones differing in their sensitivity to O3. New Phytologist 179: 5561.
  • Causton DR, Venus JC. 1981. The biometry of plant growth. London, UK: Edward Arnold (Publishers) Ltd.
  • Centritto M, Nascetti P, Petrilli L, Raschi A, Loreto F. 2004. Profiles of isoprene emission and photosynthetic parameters in hybrid poplars exposed to free-Air CO2 enrichment. Plant, Cell & Environment 27: 403412.
  • Cescatti A, Niinemets Ü. 2004. Sunlight capture. Leaf to landscape. In: Smith WK, Vogelmann TC, Chritchley C, eds. Photosynthetic adaptation. Chloroplast to landscape. Berlin, Germany: Springer Verlag, 4285.
  • Cinege G, Louis S, Hänsch R, Schnitzler J-P. 2009. Regulation of isoprene synthase promoter by environmental and internal factors. Plant Molecular Biology 69: 593604.
  • Claeys M, Graham B, Vas G, Wang W, Vermeylen R, Pashynska V, Cafmeyer J, Guyon P, Andreae MO, Artaxo P et al. 2004. Formation of secondary organic aerosols through photooxidation of isoprene. Science 303: 11731176.
  • Coleman JS, McConnaughay KDM, Bazzaz FA. 1993. Elevated CO2 and plant nitrogen-use: is reduced tissue nitrogen concentration size-dependent? Oecologia 93: 195200.
  • Darbah JNT, Sharkey TD, Calfapietra C, Karnosky DF. 2010. Differential response of aspen and birch trees to heat stress under elevated carbon dioxide. Environmental Pollution 158: 10081014.
  • Evans GC. 1972. The quantitative analysis of plant growth. Oxford, UK: Blackwell Science.
  • Fehsenfeld F, Calvert J, Fall R, Goldan P, Guenther AB, Hewitt CN, Lamb B, Liu S, Trainer M, Westberg H et al. 1992. Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry. Global Biogeochemical Cycles 6: 389430.
  • Fuentes J, Lerdau M, Atkinson R, Baldocchi D, Bottenheim J, Ciccioli P, Lamb B, Geron C, Gu L, Guenther A et al. 2000. Biogenic hydrocarbons in the atmospheric boundary layer: a review. Bulletin of the American Meteorological Society 81: 15371575.
  • Funk JL, Giardina CP, Knohl A, Lerdau MT. 2006. Influence of nutrient availability, stand age, and canopy structure on isoprene flux in a Eucalyptus saligna experimental forest. Journal of Geophysical Research – Biogeosciences 111: G02012.
  • Funk JL, Jones CG, Lerdau MT. 1999. Defoliation effects on isoprene emission from Populus deltoides. Oecologia 118: 333339.
  • Gielen B, Liberloo M, Bogaert J, Calfapietra C, De Angelis P, Miglietta F, Scarascia-Mugnozza G, Ceulemans R. 2003. Three years of free-air CO2 enrichment (POPFACE) only slightly affect profiles of light and leaf characteristics in closed canopies of Populus. Global Change Biology 9: 10221037.
  • Guenther A, Hewitt CN, Erickson D, Fall R, Geron C, Graedel T, Harley P, Klinger L, Lerdau M, McKay WA et al. 1995. A global model of natural volatile organic compound emissions. Journal of Geophysical Research 100: 88738892.
  • Guenther A, Karl T, Harley P, Wiedinmyer C, Palmer PI, Geron C. 2006. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmospheric Chemistry and Physics 6: 31813210.
  • Guenther AB, Zimmerman PR, Harley PC, Monson RK, Fall R. 1993. Isoprene and monoterpene emission rate variability: model evaluations and sensitivity analyses. Journal of Geophysical Research 98: 1260912617.
  • Häikiö E, Freiwald V, Julkunenen-Tiitto R, Beuker E, Holopainen T, Oksanen E. 2009. Differences in leaf characteristics between ozone-sensitive and ozone tolerant hybrid aspen (Populus tremula × Populus tremuloides) clones. Tree Physiology 29: 5366.
  • Hallquist M, Wenger JC, Baltensperger U, Rudich Y, Simpson D, Claeys M, Dommen J, Donahue NM, George C, Goldstein AH et al. 2009. The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmospheric Chemistry and Physics 9: 51555236.
  • Harley P, Guenther A, Zimmerman P. 1996. Effects of light, temperature and canopy position on net photosynthesis and isoprene emission from sweetgum (Liquidambar styraciflua) leaves. Tree Physiology 16: 2532.
  • Harley PC, Litvak ME, Sharkey TD, Monson RK. 1994. Isoprene emission from velvet bean leaves. Interactions among nitrogen availability, growth photon flux density, and leaf development. Plant Physiology 105: 279285.
  • Heald CL, Wilkinson MJ, Monson RK, Alo CA, Wang G, Guenther A. 2009. Response of isoprene emission to ambient CO2 changes and implications for global budgets. Global Change Biology 15: 11271140.
  • Hunt R. 1982. Plant growth curves. The functional approach to plant growth analysis. London, UK: Edward Arnold (Publishers) Ltd.
  • IPCC. 2007. Working Group I Report: the physical basis of climate change. URL http://ipcc-wg1.ucar.edu/wg1/wg1-report.html [accessed on 12 April 2012].
  • Kaplan JO, Folberth G, Hauglustaine DA. 2006. Role of methane and biogenic volatile organic compound sources in late glacial and Holocene fluctuations of atmospheric methane concentrations. Global Biogeochemical Cycles 20: GB2016.
  • Kreuzwieser J, Graus M, Wisthaler A, Hansel A, Rennenberg H, Schnitzler J-P. 2002. Xylem-transported glucose as an additional carbon source for leaf isoprene formation in Quercus robur. New Phytologist 156: 171178.
  • Kroll JH, Ng NL, Murphy SM, Flagan RC, Seinfeld JH. 2005. Secondary organic aerosol formation from isoprene photooxidation under high-NOx conditions. Geophysical Research Letters 32: L18808.
  • Kuhn U, Rottenberger S, Biesenthal T, Wolf A, Schebeske G, Ciccioli P, Brancaleoni E, Frattoni M, Tavares TM, Kesselmeier J. 2004. Seasonal differences in isoprene and light-dependent monoterpene emission by Amazonian tree species. Global Change Biology 10: 663682.
  • Kuzma J, Fall R. 1993. Leaf isoprene emission rate is dependent on leaf development and the level of isoprene synthase. Plant Physiology 101: 435440.
  • Li D, Chen Y, Shi Y, He X, Chen X. 2009. Impact of elevated CO2 and O3 concentrations on biogenic volatile organic compounds emissions from Ginkgo biloba. Bulletin of Environmental Contamination and Toxicology 82: 473477.
  • Li Z, Ratliff EA, Sharkey TD. 2011. Effect of temperature on postillumination isoprene emission in oak and poplar. Plant Physiology 155: 10371046.
  • Liberloo M, Tulva I, Räim O, Kull O, Ceulemans R. 2007. Photosynthetic stimulation under long-term CO2 enrichment and fertilization is sustained across a closed Populus canopy profile (EUROFACE). New Phytologist 173: 537549.
  • Lichtenthaler HK. 1999. The 1-deoxy-d-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annual Review of Plant Physiology and Plant Molecular Biology 50: 4765.
  • Lichtenthaler HK, Schwender Jr, Disch A, Rohmer M. 1997. Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathway. FEBS Letters 400: 271274.
  • Liu L, King JS, Giardina CP. 2005. Effects of elevated concentrations of atmospheric CO2 and tropospheric O3 on leaf litter production and chemistry in trembling aspen and paper birch communities. Tree Physiology 25: 15111522.
  • Liu ZG, Li FR. 2003. The generalized Chapman-Richards function and applications to tree and stand growth. Journal of Forestry Research 14: 1926.
  • Loivamäki M, Louis S, Cinege G, Zimmer I, Fischbach RJ, Schnitzler J-P. 2007. Circadian rhythms of isoprene biosynthesis in grey poplar leaves. Plant Physiology 143: 540551.
  • Loivamäki M, Mumm R, Dicke M, Schnitzler JP. 2008. Isoprene interferes with the attraction of bodyguards by herbaceous plants. Proceedings of the National Academy of Sciences, USA 105: 1743017435.
  • Long SP, Ainsworth EA, Rogers A, Ort DR. 2004. Rising atmospheric carbon dioxide: plants FACE the future. Annual Review of Plant Biology 55: 591628.
  • Loreto F, Centritto M, Barta C, Calfapietra C, Fares S, Monson RK. 2007. The relationship between isoprene emission rate and dark respiration rate in white poplar (Populus alba L.) leaves. Plant, Cell & Environment 30: 662669.
  • Loreto F, Schnitzler J-P. 2010. Abiotic stresses and induced BVOCs. Trends in Plant Science 15: 154166.
  • Loreto F, Sharkey T. 1993. On the relationship between isoprene emission and photosynthetic metabolites under different environmental conditions. Planta 189: 420424.
  • Loreto F, Velikova V. 2001. Isoprene produced by leaves protects the photo-synthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiology 127: 17811787.
  • Luo Y, Hui D, Zhang D. 2006. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis. Ecology 87: 5363.
  • Luo Y, Sims DA, Griffin KL. 1998. Nonlinearity of photosynthetic responses to growth in rising atmospheric CO2: an experimental and modeling study. Global Change Biology 4: 173183.
  • Magel E, Mayrhofer S, Müller A, Zimmer I, Hampp R, Schnitzler JP. 2006. Photosynthesis and substrate supply for isoprene biosynthesis in poplar leaves. Atmospheric Environment 40(Suppl 1): 138151.
  • Mayrhofer S, Teuber M, Zimmer I, Louis S, Fischbach RJ, Schnitzler J-P. 2005. Diurnal and seasonal variation of isoprene biosynthesis-related genes in grey poplar leaves. Plant Physiology 139: 474484.
  • McConnaughay KDM, Coleman JS. 1999. Biomass allocation in plants: ontogeny or optimality? A test along three resource gradients. Ecology 80: 25812593.
  • Miyazawa S-I, Warren CR, Turpin DH, Livingston NJ. 2011. Determination of the site of CO2 sensing in poplar: is the area-based N content and anatomy of new leaves determined by their immediate CO2 environment or by the CO2 environment of mature leaves? Journal of Experimental Botany 62: 27872796.
  • Monson RK, Harley PC, Litvak ME, Wildermuth M, Guenther AB, Zimmerman PR, Fall R. 1994. Environmental and developmental controls over the seasonal pattern of isoprene emission from aspen leaves. Oecologia 99: 260270.
  • Monson RK, Hills AJ, Zimmerman PR, Fall RR. 1991. Studies of the relationship between isoprene emission rate and CO2 or photon-flux density using a real-time isoprene analyzer. Plant, Cell & Environment 14: 517523.
  • Monson RK, Trahan N, Rosenstiel TN, Veres P, Moore D, Wilkinson M, Norby RJ, Volder A, Tjoelker MG, Briske DD et al. 2007. Isoprene emission from terrestrial ecosystems in response to global change: minding the gap between models and observations. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 365: 16771695.
  • Niinemets Ü. 2010a. Mild versus severe stress and BVOCs: thresholds, priming and consequences. Trends in Plant Science 15: 145153.
  • Niinemets Ü. 2010b. Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: past stress history, stress interactions, tolerance and acclimation. Forest Ecology and Management 260: 16231639.
  • Niinemets Ü. 2012. Whole plant photosynthesis. In: Flexas J, Loreto F, Medrano H, eds. Terrestrial photosynthesis in a changing environment. The molecular, physiological and ecological bases of photosynthesis driving its response to the environmental changes. Cambridge, UK: Cambridge University Press, 403428.
  • Niinemets Ü, Copolovici L, Hüve K. 2010b. High within-canopy variation in isoprene emission potentials in temperate trees: implications for predicting canopy-scale isoprene fluxes. Journal of Geophysical Research – Biogeosciences 115: G04029.
  • Niinemets Ü, Kuhn U, Harley PC, Staudt M, Arneth A, Cescatti A, Ciccioli P, Copolovici L, Geron C, Guenther AB et al. 2011. Estimation of isoprenoid emission factors from enclosure studies: measurements, data processing, quality and standardized measurement protocols. Biogeosciences 8: 22092246.
  • Niinemets Ü, Monson RK, Arneth A, Ciccioli P, Kesselmeier J, Kuhn U, Noe SM, Peñuelas J, Staudt M. 2010a. The leaf-level emission factor of volatile isoprenoids: caveats, model algorithms, response shapes and scaling. Biogeosciences 7: 18091832.
  • Niinemets Ü, Tenhunen JD, Harley PC, Steinbrecher R. 1999. A model of isoprene emission based on energetic requirements for isoprene synthesis and leaf photosynthetic properties for Liquidambar and Quercus. Plant, Cell & Environment 22: 13191335.
  • Norby RJ, DeLucia EH, Gielen B, Calfapietra C, Giardina CP, King JS, Ledford J, McCarthy HR, Moore DJP, Ceulemans R et al. 2005. Forest response to elevated CO2 is conserved across a broad range of productivity. Proceedings of the National Academy of Sciences, USA 102: 1805218056.
  • Nowak RS, Ellsworth DS, Smith SD. 2004. Functional responses of plants to elevated atmospheric CO2– do photosynthetic and productivity data from FACE experiments support early predictions? New Phytologist 162: 253280.
  • Oksanen E, Sober J, Karnosky DF. 2001. Impacts of elevated CO2 and/or O3 on leaf ultrastructure of aspen (Populus tremuloides) and birch (Betula papyrifera) in the Aspen FACE experiment. Environmental Pollution 115: 437446.
  • Owen SM, MacKenzie AR, Stewart H, Donovan R, Hewitt CN. 2003. Biogenic volatile organic compound (VOC) emission estimates from an urban tree canopy. Ecological Applications 13: 927938.
  • Owen SM, Peñuelas J. 2005. Opportunistic emissions of volatile isoprenoids. Trends in Plant Science 10: 420426.
  • Pegoraro E, Abrell L, Van Haren J, Barron-Gafford G, Grieve KA, Malhi Y, Murthy R, Lin G. 2005. The effect of elevated atmospheric CO2 and drought on sources and sinks of isoprene in a temperate and tropical rainforest mesocosm. Global Change Biology 11: 12341246.
  • Pegoraro E, Rey ANA, Abrell L, Van Haren J, Lin G. 2006. Drought effect on isoprene production and consumption in Biosphere 2 tropical rainforest. Global Change Biology 12: 456469.
  • Peñuelas J, Staudt M. 2010. BVOCs and global change. Trends in Plant Science 15: 133144.
  • Pienaar LV, Turnbull KJ. 1973. The Chapman-Richards generalization of Von Bertalanffy's growth model for basal area growth and yield in even-aged stands. Forest Science 19: 222.
  • Pierce TE, Waldruff PS. 1991. PC-BEIS – a personal-computer version of the biogenic emissions inventory system. Journal of the Air & Waste Management Association 41: 937941.
  • Possell M, Hewitt CN. 2011. Isoprene emissions from plants are mediated by atmospheric CO2 concentrations. Global Change Biology 17: 15951610.
  • Possell M, Nicholas Hewitt C, Beerling DJ. 2005. The effects of glacial atmospheric CO2 concentrations and climate on isoprene emissions by vascular plants. Global Change Biology 11: 6069.
  • Possell M, Ryan A, Vickers C, Mullineaux P, Hewitt C. 2010. Effects of fosmidomycin on plant photosynthesis as measured by gas exchange and chlorophyll fluorescence. Photosynthesis Research 104: 4959.
  • Rapparini F, Baraldi R, Miglietta F, Loreto F. 2004. Isoprenoid emission in trees of Quercus pubescens and Quercus ilex with lifetime exposure to naturally high CO2 environment. Plant, Cell & Environment 27: 381391.
  • Rasulov B, Copolovici L, Laisk A, Niinemets Ü. 2009. Postillumination isoprene emission: in vivo measurements of dimethylallyldiphosphate pool size and isoprene synthase kinetics in aspen leaves. Plant Physiology 149: 16091618.
  • Rasulov B, Hüve K, Bichele I, Laisk A, Niinemets Ü. 2010. Temperature response of isoprene emission in vivo reflects a combined effect of substrate limitations and isoprene synthase activity: a kinetic analysis. Plant Physiology 154: 15581570.
  • Rosenstiel TN, Potosnak MJ, Griffin KL, Fall R, Monson RK. 2003. Increased CO2 uncouples growth from isoprene emission in an agriforest ecosystem. Nature 421: 256259.
  • Sanadze G. 2010. Photobiosynthesis of isoprene as an example of leaf excretory function in the light of contemporary thermodynamics. Russian Journal of Plant Physiology 57: 16.
  • Sasaki K, Ohara K, Yazaki K. 2005. Gene expression and characterization of isoprene synthase from Populus alba. FEBS Letters 579: 25142518.
  • Schnitzler J-P, Graus M, Kreuzwieser J, Heizmann U, Rennenberg H, Wisthaler A, Hansel A. 2004. Contribution of different carbon sources to isoprene biosynthesis in poplar leaves. Plant Physiology 135: 152160.
  • Scholefield PA, Doick KJ, Herbert BMJ, Hewitt CNS, Schnitzler JP, Pinelli P, Loreto F. 2004. Impact of rising CO2 on emissions of volatile organic compounds: isoprene emission from Phragmites australis growing at elevated CO2 in a natural carbon dioxide spring. Plant, Cell & Environment 27: 393401.
  • Sharkey TD, Loreto F, Delwiche CF. 1991. High carbon dioxide and sun/shade effects on isoprene emission from oak and aspen tree leaves. Plant, Cell & Environment 14: 333338.
  • Sharkey TD, Singsaas EL. 1995. Why plants emit isoprene. Nature 374: 769.
  • Sharkey TD, Wiberley AE, Donohue AR. 2008. Isoprene emission from plants: why and how. Annals of Botany 101: 518.
  • Sharkey TD, Yeh S. 2001. Isoprene emissions from plants. Annual Review of Plant Physiology and Plant Molecular Biology 52: 407436.
  • Sims DA, Seemann JR, Luo Y. 1998a. Elevated CO2 concentration has independent effects on expansion rates and thickness of soybean leaves across light and nitrogen gradients. Journal of Experimental Botany 49: 583591.
  • Sims DA, Seemann JR, Luo Y. 1998b. The significance of differences in the mechanisms of photosynthetic acclimation to light, nitrogen and CO2 for return on investment in leaves. Functional Ecology 12: 185194.
  • Singsaas EL, Sharkey TD. 1998. The regulation of isoprene emission responses to rapid leaf temperature fluctuations. Plant, Cell & Environment 21: 11811188.
  • Singsaas EL, Sharkey TD. 2000. The effects of high temperature on isoprene synthesis in oak leaves. Plant, Cell & Environment 23: 751757.
  • Sun Z, Copolovici L, Niinemets Ü. 2012a. Can the capacity for isoprene emission acclimate to environmental modifications during autumn senescence in temperate deciduous tree species Populus tremula? Journal of Plant Research 125: 263274.
  • Sun Z, Niinemets Ü, Hüve K, Noe SM, Rasulov B, Copolovici L, Vislap V. 2012b. Enhanced isoprene emission capacity and altered light responsiveness in aspen grown under elevated atmospheric CO2 concentration. Global Change Biology 18: 34233440.
  • Taylor G, Tallis MJ, Giardina CP, Percy KE, Miglietta F, Gupta PS, Gioli B, Calfapietra C, Gielen B, Kubiske ME et al. 2008. Future atmospheric CO2 leads to delayed autumnal senescence. Global Change Biology 14: 264275.
  • Tognetti R, Johnson JD, Michelozzi M, Raschi A. 1998. Response of foliar metabolism in mature trees of Quercus pubescens and Quercus ilex to long-term elevated CO2. Environmental and Experimental Botany 39: 233245.
  • Trowbridge AM, Asensio D, Eller ASD, Way DA, Wilkinson MJ, Schnitzler J-P, Jackson RB, Monson RK. 2012. Contribution of various carbon sources toward isoprene biosynthesis in poplar leaves mediated by altered atmospheric CO2 concentrations. PLoS ONE 7: e32387.
  • Velikova V, Tsonev T, Barta C, Centritto M, Koleva D, Stefanova M, Busheva M, Loreto F. 2009. BVOC emissions, photosynthetic characteristics and changes in chloroplast ultrastructure of Platanus orientalis L. exposed to elevated CO2 and high temperature. Environmental Pollution 157: 26292637.
  • Velikova V, Várkonyi Z, Szabó M, Maslenkova L, Nogues I, Kovács L, Peeva V, Busheva M, Garab G, Sharkey TD et al. 2011. Increased thermostability of thylakoid membranes in isoprene-emitting leaves probed with three biophysical techniques. Plant Physiology 157: 905916.
  • Vickers CE, Gershenzon J, Lerdau MT, Loreto F. 2009. A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nature Chemical Biology 5: 283291.
  • Wiberley AE, Linskey AR, Falbel TG, Sharkey TD. 2005. Development of the capacity for isoprene emission in kudzu. Plant, Cell & Environment 28: 898905.
  • Wiedinmyer C, Tie X, Guenther A, Neilson R, Granier C. 2006. Future changes in biogenic isoprene emissions: how might they affect regional and global atmospheric chemistry? Earth Interactions 10: 119.
  • Wilkinson MJ, Monson RK, Trahan N, Lee S, Brown E, Jackson RB, Polley HW, Fay PA, Fall RAY. 2009. Leaf isoprene emission rate as a function of atmospheric CO2 concentration. Global Change Biology 15: 11891200.
  • Williams J, Roberts JM, Fehsenfeld FC, Bertman SB, Buhr MP, Goldan PD, Hübler G, Kuster WC, Ryerson TB, Trainer M et al. 1997. Regional ozone from biogenic hydrocarbons deduced from airborne measurements of PAN, PPN, and MPAN. Geophysical Research Letters 24: 10991102.
  • Yin X, Goudriaan JAN, Lantinga EA, Vos JAN, Spiertz HJ. 2003. A flexible sigmoid function of determinate growth. Annals of Botany 91: 361371.
  • Zimmer W, Brüggemann N, Emeis S, Giersch C, Lehning A, Steinbrecher R, Schnitzler JP. 2000. Process-based modeling of isoprene emission by oak leaves. Plant, Cell & Environment 23: 585595.