• artemisinin;
  • artemisinin biosynthetic pathway;
  • dihydroartemisinic acid;
  • disease resistance to B. cinerea;
  • secondary metabolism;
  • trichome specific


  • Six transcription factors of APETALA2/ethylene-response factor (AP2/ERF) family were cloned and analyzed in Artemisia annua. Real-time quantitative polymerase chain reaction (RT-Q-PCR) showed that AaORA exhibited similar expression patterns to those of amorpha-4,11-diene synthase gene (ADS), cytochrome P450-dependent hydroxylase gene (CYP71AV1) and double bond reductase 2 gene (DBR2) in different tissues of A. annua.
  • AaORA is a trichome-specific transcription factor, which is expressed in both glandular secretory trichomes (GSTs) and nonglandular T-shaped trichomes (TSTs) of A. annua. The result of subcellular localization shows that AaORA is targeted to the nuclei and the cytoplasm.
  • Overexpression and RNA interference (RNAi) of AaORA in A. annua regulated, positively and significantly, the expression levels of ADS, CYP71AV1, DBR2 and AaERF1. The up-regulated or down-regulated expression levels of these genes resulted in a significant increase or decrease in artemisinin and dihydroartemisinic acid. The results demonstrate that AaORA is a positive regulator in the biosynthesis of artemisinin.
  • Overexpression of AaORA in Arabidopsis thaliana increased greatly the transcript levels of the defense marker genes PLANT DEFENSIN1.2 (PDF1.2), HEVEIN-LIKE PROTEIN (HEL) and BASIC CHITINASE (B-CHI). After inoculation with Botrytis cinerea, the phenotypes of AaORA overexpression in A. thaliana and AaORA RNAi in A. annua demonstrate that AaORA is a positive regulator of disease resistance to B. cinerea.