SEARCH

SEARCH BY CITATION

References

  • Beavis WD. 1998. QTL analysis: power, precision, and accuracy. In: Patterson HA, ed. Molecular dissection of complex traits. Boca Raton, FL, USA: CRC Press, 145162.
  • Breitling R, Li Y, Tesson BM, Fu J, Wu C, Wiltshire T, Gerrits A, Bystrykh LV, de Haan G, Su AI et al. 2008. Genetical genomics: spotlight on QTL hotspots. PLoS Genetics 4: e1000232.
  • Brown GR, Bassoni DL, Gill GP, Fontana JR, Wheeler NC, Megraw RA, Davis MF, Sewell MM, Tuskan GA, Neale DB. 2003. Identification of quantitative trait loci influencing wood property traits in loblolly pine (Pinus taeda L.). III. QTL verification and candidate gene mapping. Genetics 164: 15371546.
  • Brown DM, Zeef LAH, Ellis J, Goodacre R, Turner SR. 2005. Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. The Plant Cell 17: 22812295.
  • Buckler ES, Holland JB, Bradbury PJ, Archarya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC et al. 2009. The genetic architecture of maize flowering time. Science 325: 714718.
  • Bundock PC, Potts BM, Vaillancourt RE. 2008. Detection and stability of quantitative trait loci (QTL) in Eucalyptus globulus. Tree Genetics and Genomes 4: 8595.
  • Burdon RD. 1977. Genetic correlation as a concept for studying genotype–environment interaction in forest tree breeding. Silvae Genetica 26: 168175.
  • Bus VGM, Esmenjaud D, Buck E, Laurens F. 2009. Application of genetic markers in rosaceous crops. In: Folta KM, Gardiner SE, eds. Genetics and genomics of the Rosaceae. New York, NY, USA: Springer, 563600.
  • Butcher P, Southerton S. 2007. Marker-assisted selection in forestry species. In: Guimarães EP, Ruane J, Scherf BD, Sonnino A, Dargie JD, eds. Marker-assisted selection current status and future perspectives in crops, livestock, forestry and fish. Rome, Italy: FAO, 283305.
  • Churchill GA, Doerge RW. 1994. Empirical threshold values for quantitative trait mapping. Genetics 138: 963971.
  • Collard BCY, Mackill DJ. 2008. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences 12: 557572.
  • Cooper M, DeLacy IH. 1994. Relationships among analytical methods used to study genotypic variation and genotype-by-environment interaction in plant breeding multi-environment experiments. Theoretical and Applied Genetics 88: 561572.
  • Costa e Silva J, Borralho NMG, Araújo JA, Vaillancourt RE, Potts BM. 2009. Genetic parameters for growth, wood density and pulp yield in Eucalyptus globulus. Tree Genetics and Genomes 5: 291305.
  • Costa e Silva J, Borralho NMG, Potts BM. 2004. Estimation of additive and non-additive genetic parameters from clonally replicated and seedling progenies of Eucalyptus globulus. Theoretical and Applied Genetics 108: 11131119.
  • Costa e Silva J, Hardner C, Tilyard P, Potts BM. 2011. The effects of age and environment on the expression of inbreeding depression in Eucalyptus globulus. Heredity 107: 5060.
  • Costa e Silva J, Potts BM, Dutkowski GW. 2006. Genotype by environment interaction for growth of Eucalyptus globulus in Australia. Tree Genetics and Genomes 2: 6175.
  • Crossa J, De Los Campos G, Pérez P, Gianola D, Burgueño J, Araus JL, Makumbi D, Singh RP, Dreisigacker S, Yan J et al. 2010. Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics 186: 713724.
  • Denis M, Bouvet J-M. 2013. Efficiency of genomic selection with models including dominance effect in the context of Eucalyptus breeding. Tree Genetics and Genomics 9: 3751.
  • Dillon SK, Nolan M, Wu HX, Southerton SG. 2010. Association genetics reveal candidate gene SNPs affecting wood properties in Pinus radiata. Australian Forestry 73: 185190.
  • Downes GM, Meder R, Bond H, Ebdon N, Hicks C, Harwood C. 2011. Measurement of cellulose content, kraft pulp yield and basic density in eucalypt woodmeal using multisite and multispecies near infra-red spectroscopic calibrations. Southern Forests 73: 181186.
  • Freeman JS, Potts BM, Shepherd M, Vaillancourt RE. 2006. Parental and consensus linkage maps of Eucalyptus globulus using AFLP and microsatellite markers. Silvae Genetica 55: 202217.
  • Freeman JS, Potts BM, Vaillancourt RE. 2008. Few Mendelian genes underlie the quantitative response of a forest tree, Eucalyptus globulus, to a natural fungal epidemic. Genetics 178: 563571.
  • Freeman JS, Whittock SP, Potts BM, Vaillancourt RE. 2009. QTL influencing growth and wood properties in Eucalyptus globulus. Tree Genetics and Genomes 5: 713722.
  • Gion J-M, Carouché A, Deweer S, Bedon F, Pichavant F, Charpentier J-P, Baillères H, Rozenberg P, Carocha V, Ognouabi N et al. 2011. Comprehensive genetic dissection of wood properties in a widely-grown tropical tree: Eucalyptus. BMC Genomics 12: 301.
  • Grattapaglia D, Bertolucci FL, Penchel R, Sederoff RR. 1996. Genetic mapping of quantitative trait loci controlling growth and wood quality traits in Eucalyptus grandis using a maternal half-sib family and RAPD markers. Genetics 144: 12051214.
  • Grattapaglia D, Resende MDV. 2011. Genomic selection in forest tree breeding. Tree Genetics and Genomes 7: 241255.
  • Groover A, Devey M, Fiddler T, Lee J, Megraw R, Mitchel-Olds T, Sherman B, Vujcic S, Williams C, Neale D. 1994. Identification of quantitative trait loci influencing wood specific gravity in an outbred pedigree of loblolly pine. Genetics 138: 12931300.
  • Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME. 2009. Invited review: genomic selection in dairy cattle: progress and challenges. Journal of Dairy Science 924: 33443.
  • Hefer C, Mizrachi E, Joubert F, Myburg A. 2011. The Eucalyptus genome integrative explorer (EucGenIE): a resource for Eucalyptus genomics and transcriptomics. BMC Proceedings 5: 049.
  • Heffner EL, Sorrells ME, Jannink J-L. 2009. Genomic selection for crop improvement. Crop Science 49: 112.
  • Hodge GR, Volker PW, Potts BM, Owen JV. 1996. A comparison of genetic information from open-pollinated and control-pollinated progeny tests in two eucalypt species. Theoretical and Applied Genetics 92: 5363.
  • Hudson CJ, Kullan ARK, Freeman JS, Faria DA, Grattapaglia D, Kilian A, Myburg AA, Potts BM, Vaillancourt RE. 2012. High synteny and colinearity among Eucalyptus genomes revealed by high-density comparative mapping. Tree Genetics and Genomes 8: 339352.
  • Ingvarsson PK, Street NR. 2011. Association genetics of complex traits in plants. New Phytologist 189: 909922.
  • Isik F, Whetten R, Zapata-Valenzuela J, Ogut F. 2011. Genomic selection in loblolly pine – from lab to field. BMC Proceedings 5: 18.
  • Iwata H, Hayashi T, Tsumura Y. 2011. Prospects for genomic selection in conifer breeding: a simulation study of Cryptomeria japonica. Tree Genetics and Genomes 7: 747758.
  • Jannink JL, Lorenz AJ, Iwata H. 2010. Genomic selection in plant breeding: from theory to practice. Briefings in Functional Genomics 9: 166177.
  • Jermstad KD, Bassoni DL, Jech KS, Ritchie GA, Wheeler NC, Neale DB. 2003. Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir. III. QTL by environment interactions. Genetics 165: 14891506.
  • Kirst M, Basten CJ, Myburg AA, Zeng Z-B, Sederoff RR. 2005. Genetic architecture of transcript-level variation in differentiating xylem of a Eucalyptus hybrid. Genetics 169: 22952303.
  • Kumar S, Bink MCA, Volz RK, Bus VGM, Chagné D. 2011. Towards genomic selection in apple (Malus × domestica Borkh.) breeding programmes: prospects, challenges and strategies. Tree Genetics and Genomes 8: 114.
  • Lima JT, Breese MC, Cahalan CM. 2000. Genotype–environment interaction in wood basic density of Eucalyptus clones. Wood Science and Technology 34: 197206.
  • Liu P-Y, Zhu J, Yan L. 2006. Impacts of QTL × environment interactions on genetic response to marker-assisted selection. Acta Genetica Sinica 33: 6371.
  • McRae TA, Pilbeam DJ, Powell MB, Dutkowski GW, Joyce K, Tier B. 2004. Genetic evaluation in eucalypt breeding programs. In: Borralho NMG, Pereira JS, Marques C, Coutinho J, Madeira M, Tomé M, eds. Proceedings of IUFRO Conference: Eucalyptus in a changing world. Aveiro, Portugal: RAIZ, Instituto Investigação de Floresta e Papel, 189190.
  • Messmer R, Fracheboud Y, Bänziger M, Vargas M, Stamp P, Ribaut J-M. 2009. Drought stress and tropical maize: QTL-by-environment interactions and stability of QTLs across environments for yield components and secondary traits. Theoretical and Applied Genetics 119: 913930.
  • Meuwissen THE, Hayes BJ, Goddara ME. 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics 157: 18191829.
  • Milgate AW, Vaillancourt RE, Mohammed C, Powell M, Potts BM. 2005. Genetic structure of a Mycosphaerella cryptic population. Australian Plant Pathology 34: 345354.
  • Muneri A, Raymond CA. 2000. Genetic parameters and genotype by environment interactions for basic density, pilodyn penetration and stem diameter in Eucalyptus globulus. Forest Genetics 7: 317328.
  • Neale DB, Kremer A. 2011. Forest tree genomics: growing resources and applications. Nature Reviews Genetics 12: 111122.
  • Neale DB, Savolainen O. 2004. Association genetics of complex traits in conifers. Trends in Plant Science 9: 325330.
  • Novaes E, Osorio L, Drost DR, Miles BL, Boaventura-Novaes CRD, Benedict C, Dervinis C, Yu Q, Sykes R, Davis M et al. 2009. Quantitative genetic analysis of biomass and wood chemistry of Populus under different nitrogen levels. New Phytologist 182: 878890.
  • Pelgas B, Bousquet J, Meirmans PG, Ritland K, Isabel N. 2011. QTL mapping in white spruce: gene maps and genomic regions underlying adaptive traits across pedigrees, years and environments. BMC Genomics 12: 145.
  • Petroli CD, Sansaloni CP, Carling J, Steane DA, Vaillancourt RE, Myburg AA, da Silva Jr OB, Pappas GJ Jr, Kilian A, Grattapaglia D. 2012. Genomic characterization of DArT markers based on high-density linkage analysis and physical mapping to the Eucalyptus genome. PLoS ONE 7: e44684.
  • Poke FS, Wright JK, Raymond CA. 2005. Predicting extractives and lignin contents in Eucalyptus globulus using near infrared reflectance analysis. Journal of Wood Chemistry and Technology 24: 5567.
  • Pot D, Rodrigues J-C, Rozenburg P, Chantre G, Tibbits J, Cahalan C, Pichavant F, Plomion C. 2006. QTL and candidate genes for wood properties in maritime pine (Pinus pinaster Ait). Tree Genetics and Genomes 2: 1024.
  • Potts BM, McGowen MH, Williams DR, Suitor S, Jones TH, Gore PL, Vaillancourt RE. 2008. Advances in reproductive biology and seed production systems of Eucalyptus: the case of Eucalyptus globulus. Southern Forests 70: 145154.
  • Potts BM, Vaillancourt RE, Jordan GJ, Dutkowski GW, Costa e Silva J, McKinnon GE, Steane DA, Volker PW, Lopez GA, Apiolaza LA et al. 2004. Exploration of the Eucalyptus globulus gene pool. In: Borralho NMG, Pereira JS, Marques C, Coutinho J, Madeira M, Tomé M, eds. Proceedings of IUFRO Conference: Eucalyptus in a changing world. Aveiro, Portugal: RAIZ, Instituto Investigação de Floresta e Papel, 189190.
  • Qiu D, Wilson IW, Gan S, Washusen R, Moran GF, Southerton SG. 2008. Gene expression in Eucalyptus branch wood with marked variation in cellulose microfibril orientation and lacking G-layers. New Phytologist 179: 94103.
  • Rae A, Pinel M, Bastien C, Sabatti M, Street N, Tucker J, Dixon C, Marron N, Dillen S, Taylor G. 2008. QTL for yield in bioenergy Populus: identifying G × E interactions from growth at three contrasting sites. Tree Genetics and Genomes 4: 16142950.
  • Raymond CA. 2002. Genetics of Eucalyptus wood properties. Annals of Forest Science 59: 525531.
  • Raymond CA. 2011. Genotype by environment interactions for Pinus radiata in New South Wales, Australia. Tree Genetics and Genomes 7: 819833.
  • Raymond CA, Schimleck LR, Muneri A, Michell AJ. 2001. Genetic parameters and genotype-by-environment interactions for pulp-yield predicted using near infrared reflectance analysis and pulp productivity in Eucalyptus globulus. International Journal of Forest Genetics 8: 213224.
  • Resende MFR, Muñoz P, Acosta JJ, Peter GF, Davis JM, Grattapaglia D, Resende MDV, Kirst M. 2012a. Accelerating the domestication of trees using genomic selection: accuracy of prediction models across ages and environments. New Phytologist 193: 617624.
  • Resende MDV, Resende MFR, Sansaloni CP, Petroli CD, Missiaggia AA, Aguiar AM, Abad JM, Takahashi EK, Rosado AM, Faria DA et al. 2012b. Genomic selection for growth and wood quality in Eucalyptus: capturing the missing heritability and accelerating breeding for complex traits in forest trees. New Phytologist 194: 116128.
  • Rocha RB, Barros EG, Cruz CD, Rosada AM, Arouja EF. 2007. Mapping of QTLs related with wood quality and developmental characteristics in hybrids (Eucalyptus grandis × Eucalyptus urophylla). Revista Árvore 31: 1324.
  • Sansaloni CP, Petroli CD, Carling J, Hudson C, Steane DA, Myburg AA, Grattapaglia D, Vaillancourt RE, Kilian A. 2010. A high-density Diversity Arrays Technology (DArT) microarray for genome-wide genotyping in Eucalyptus. Plant Methods 6: 16.
  • SAS Institute Inc.. 2010. SAS 9.2 for windows. Cary, NC, USA: SAS Institute.
  • Sewell MM, Davis MF, Tuskan GA, Wheeler NC, Elam CC, Bassoni DL, Neale DB. 2002. Identification of QTLs influencing wood property traits in loblolly pine (Pinus taeda L.). II. Chemical wood properties. Theoretical and Applied Genetics 104: 214222.
  • Southerton SG, Williams D, Joyce K, Ravenwood I, Blackburn D, MacMillan CP, George J, Bell JC, Bhuiyan N, Thumma BR. 2010. Association of allelic variation in xylem genes with wood properties in Eucalyptus nitens. Australian Forestry 73: 259264.
  • Stackpole DJ, Vaillancourt RE, Alves A, Rodrigues J, Potts BM. 2011. Genetic variation in the chemical components of Eucalyptus globulus wood. G3: Genes, Genomes, Genetics 1: 151159.
  • Steane DA, Nicolle D, Sansaloni CP, Petroli C, Carling J, Kilian A, Myburg AA, Vaillancourt RE. 2011. Population genetic analysis and phylogeny reconstruction in Eucalyptus (Myrtaceae) using high-throughput, genome-wide genotyping. Molecular Phylogenetics and Evolution 59: 206224.
  • Strauss SH, Lande R, Namkoong G. 1992. Limitations of molecular-marker-aided selection in forest tree breeding. Canadian Journal of Forest Research 22: 10501061.
  • Stuber CW, Goodman MM, Moll RH. 1982. Improvement of yield and ear number resulting from selection at allozyme loci in a maize population. Crop Science 22: 737740.
  • Symonds VV, Godoy AV, Alconada T, Botto JF, Juenger TE, Casal JJ, Lloyd AM. 2005. Mapping quantitative trait loci in multiple populations of Arabidopsis thaliana identifies natural allelic variation for trichome density. Genetics 169: 16491658.
  • Tanksley SD, Young AH, Patterson Bonierbale MW. 1989. RFLP mapping in plant breeding: new tools for an old science. Biotechnology 7: 257264.
  • TAPPI. 1989. Basic density and moisture content of pulp wood. TAPPI no. T258 om-98, URL: http://www.tappi.org/.
  • Thamarus KA, Groom K, Bradley A, Raymond CA, Schimleck LR, Williams ER, Moran GF. 2004. Identification of quantitative trait loci for wood and fibre properties in two full-sib pedigrees of Eucalyptus globulus. Theoretical and Applied Genetics 109: 856864.
  • Thumma BR, MacMillan C, Southerton SG, Williams D, Joyce K, Ravenswood I. 2010a. Accelerated breeding for high pulp yield in E. nitens using DNA markers identified in 100 cell wall genes: the hottest 100. Melbourne, Victoria, Australia: Forest and Wood Products Australia Limited. Project no. PNC052-0708.
  • Thumma BR, Southerton SG, Bell JC, Owen JV, Henery ML, Moran GF. 2010b. Quantitative trait locus (QTL) analysis of wood quality traits in Eucalyptus nitens. Tree Genetics and Genomes 6: 305317.
  • Ukrainetz NK, Ritland K, Mansfield SD. 2008. Identification of quantitative trait loci for wood quality and growth across eight full-sib coastal Douglas-fir families. Tree Genetics and Genomes 4: 159170.
  • Van Ooijen JW. 1992. Accuracy of mapping quantitative trait loci in autogamous species. Theoretical and Applied Genetics 84: 803811.
  • Van Ooijen JW. 1999. LOD significance thresholds for QTL analysis in experimental populations of diploid species. Heredity 83: 613624.
  • Van Ooijen JW. 2006. JoinMap® 4, software for the calculation of genetic linkage maps in experimental populations. Wageningen, the Netherlands: Kyazma B.V.
  • Van Ooijen JW. 2009. MapQTL® 6, software for the mapping of quantitative trait loci in experimental populations of diploid species. Wageningen, the Netherlands: Kyazma B.V.
  • Verhaegen D, Plomion C, Gion JM, Poitel M, Costa P, Kremer A. 1997. Quantitative trait dissection analysis in Eucalyptus using RAPD markers 1. Detection of QTL in hybrid progeny, stability of QTL expression across different ages. Theoretical and Applied Genetics 95: 597608.
  • Visscher PM. 2008. Sizing up human height variation. Nature Genetics 40: 489490.
  • Volker PW. 2002. Quantitative genetics of Eucalyptus globulus, E. nitens and their F1 hybrid. PhD thesis, University of Tasmania, Hobart, Tas., Australia.
  • Weller JI. 2001. Quantitative trait loci analysis in animals. Wallingford, UK: CABI Publishing.
  • Williams ER, Matheson AC, Harwood CE. 2002. Experimental design and analysis for tree improvement, 2nd edn. Collingwood, Vic., Australia: CSIRO Publishing.
  • Yu Q, Li B, Nelson CD, McKeand SE, Batista VB, Mullin TJ. 2006. Association of the cad-n1 allele with increased stem growth and wood density in full-sib families of loblolly pine. Tree Genetics and Genomes 2: 98108.
  • Zapata-Valenzuela J, Isik F, Maltecca C, Wegrzyn J, Neale D, McKeand S, Whetten R. 2012. SNP markers trace familial linkages in a cloned population of Pinus taeda – prospects for genomic selection. Tree Genetics and Genomes 8: 13071318.
  • Zhong S, Toubia-Rahme H, Steffenson BJ, Smith KP. 2006. Molecular mapping and marker-assisted selection of genes for septoria speckled leaf blotch resistance in barley. Phytopathology 96: 993999.