SEARCH

SEARCH BY CITATION

References

  • Bader M, Hiltbrunner E, Körner C. 2009. Fine root responses of mature deciduous forest trees to free air carbon dioxide enrichment (FACE). Functional Ecology 147: 7385.
  • Barton CM, Montagu KD. 2004. Detection of tree roots and determination of root diameters by ground penetrating radar under optimal conditions. Tree Physiology 24: 13231331.
  • BassiriRad H. 2000. Kinetics of nutrient uptake by roots: responses to global change. New Phytologist 147: 155169.
  • BassiriRad H, Gutschick VP, Lussenhop J. 2001. Root system adjustments: regulation of plant nutrient uptake and growth responses to elevated CO2. Oecologia 126: 305320.
  • Bazzaz FA. 1990. The response of natural ecosystems to the rising global CO2 levels. Annual Review of Ecology and Systematics 21: 167196.
  • Bernston GM, Bazzaz FA. 1996. The allometry of root production and loss in seedlings of Acer rubrum (Aceraceae) and Betula papyrifera (Betulaceae): implications for root dynamics in elevated CO2. American Journal of Botany 83: 608616.
  • Bledsoe C, Fahey TJ, Ruess R, Day FP. 1999. Measurement of static root parameters – biomass, length, distribution. In: Robertson GP, Bledsoe CS, Coleman DC, Sollins P, eds. Standard soil methods for long-term ecological research. New York, NY, USA: Oxford University Press, 413436.
  • Brown ALP, Day FP, Hungate BA, Drake BG, Hinkle CR. 2007. Root biomass and nutrient dynamics in a scrub-oak ecosystem under the influence of elevated atmospheric CO2. Plant and Soil 292: 219232.
  • Brown ALP, Day FP, Stover DB. 2009. Fine root biomass estimates from minirhizotron imagery in a shrub ecosystem exposed to elevated CO2. Plant and Soil 317: 145153.
  • Butnor JR, Doolittle JA, Johnsen KH, Samuelson L, Stokes T, Kress L. 2003. Utility of ground-penetrating radar as a root biomass survey tool in forest systems. Soil Science Society of America Journal 67: 16071615.
  • Butnor JR, Stover DB, Roth B, Johnsen KH, Day FP, McInnis D. 2008. Using ground-penetrating radar to estimate tree root mass: comparing results from two Florida surveys. In: Allred B, Daniels JJ, Ehsani MR, eds. Handbook of agricultural geophysics. London, UK: CRC Press, 375382.
  • Canadell J, Zedler PH. 1995. Underground structures of woody plants in Mediterranean ecosystems of Australia, California, and Chile. In: Arroyo MTK, Zedler PH, Fox MD, eds. Ecology and biogeography of Mediterranean ecosystems in Chile, California and Australia. New York, NY, USA: Springer Verlag, 177210.
  • Carney KM, Hungate BA, Drake BG, Megonigal JP. 2007. Altered soil microbial community at elevated CO2 leads to loss of soil carbon. Proceedings of the National Academy of Sciences, USA 104: 49904995.
  • Chen X, Hutley LB, Eamus D. 2003. Carbon balance of a tropical savanna of northern Australia. Oecologia 137: 405416.
  • Day FP, Stover DB, Pagel AL, Hungate BA, Dilustro JJ, Herbert T, Drake BG, Hinkle CR. 2006. Rapid root closure after fire limits fine root responses to elevated atmospheric CO2 in a scrub oak ecosystem in central Florida, USA. Global Change Biology 12: 10471053.
  • Day FP, Weber EP, Hinkle CR, Drake BG. 1996. Effects of elevated atmospheric CO2 on fine root length and distribution in an oak-palmetto scrub ecosystem in central Florida. Global Change Biology 2: 143148.
  • Dijkstra P, Hymus G, Colavito D, Vieglais D, Cundari C, Johnson D, Hungate BA, Hinkle CR, Drake BG. 2002. Elevated atmospheric CO2 stimulates shoot growth in a Florida scrub-oak ecosystem. Global Change Biology 8: 90103.
  • Dilustro JJ, Day FP, Drake BG, Hinkle CR. 2002. Abundance, production and mortality of fine roots under elevated atmospheric CO2 in an oak-scrub ecosystem. Environmental and Experimental Botany 48: 149159.
  • Drake JE, Gallet-Budynek A, Hofmockel KS, Bernhardt ES, Billings SA, Jackson RB, Johnsen KS, Lichter J, McCarthy HR, McCormack ML et al. 2011. Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO2. Ecology Letters 14: 349357.
  • Espeleta JF, Clark DA. 2007. Multi-scale variation in fine-root biomass in a tropical rain forest: a seven-year study. Ecological Monographs 77: 377404.
  • Fahey TJ, Bledsoe CS, Day FP, Ruess R, Smucker A. 1999. Root production and demography. In: Robertson GP, Bledsoe CS, Coleman DC, Sollins P, eds. Standard soil methods for long-term ecological research. New York, NY, USA: Oxford University Press, 437455.
  • February EC, Higgins SI. 2010. The distribution of tree and grass roots in savannas in relation to soil nitrogen and water. South African Journal of Botany 76: 517523.
  • Ferguson SD, Nowak RS. 2011. Transitory effects of elevated atmospheric CO2 on fine root dynamics in an arid ecosystem do not increase long-term soil carbon input from fine root litter. New Phytologist 190: 953967.
  • Field CB, Chapin FS, Matson PA, Mooney HA. 1992. Responses of terrestrial ecosystems to the changing atmosphere: a resource-based approach. Annual Reviews of Ecology and Systematics 23: 201235.
  • Fitter AH, Stickland TR. 1992. Architectural analysis of plant root systems III: studies on plants under field conditions. New Phytologist 121: 243248.
  • Gale MR, Grigal DF. 1987. Vertical root distributions of northern tree species in relation to successional status. Canadian Journal of Forest Research 17: 829834.
  • Garten CT, Iversen CM, Norby RJ. 2011. Litterfall 15N abundance indicates declining soil nitrogen availability in a free-air CO2 enrichment experiment. Ecology 92: 133139.
  • Handa IT, Hagedorn F, Hattenschwiler S. 2008. No stimulation in root production in response to 4 years of in situ CO2 enrichment at the Swiss treeline. Functional Ecology 22: 348358.
  • Hendrick RL, Pregitzer KS. 1992. The demography of fine roots in a northern hardwood forest. Ecology 73: 10941104.
  • Hendrick RL, Pregitzer KS. 1996. Applications of minirhizotrons to understand root function in forests and other natural ecosystems. Plant and Soil 185: 293304.
  • Iversen CM, Ledford J, Norby RJ. 2008. CO2 enrichment increases carbon and nitrogen input from fine roots in a deciduous forest. New Phytologist 179: 837847.
  • Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED. 1996. A global analysis of root distributions for terrestrial biomes. Oecologia 108: 389411.
  • Jackson RB, Cook CW, Pippen JS, Palmer SM. 2009. Increased belowground biomass and soil CO2 fluxes after a decade of carbon dioxide enrichment in a warm-temperate forest. Ecology 90: 33523366.
  • Johnson DW. 2006. Progressive N limitation in forests: review and implications for long-term responses to elevated CO2. Ecology 87: 6475.
  • Johnsen K, Maier C, Kress L. 2005. Quantifying root lateral distribution and turnover using pine trees with a distinct stable carbon isotope signature. Functional Ecology 19: 8187.
  • Johnsen KH, Wear D, Oren R, Teskey RO, Sanchez R, Will R, Butnor J, Markewitz D, Richter D, Rials T et al. 2001. Meeting global policy commitments: carbon sequestration and southern pine forests. Journal of Forestry 99: 1421.
  • Jongen M, Jones MB, Hebeisen T, Blum H, Hendrey GR. 1995. The effects of CO2 concentrations on the root growth of Lolium perenne and Trifolium pepens grown in a FACE system. Global Change Biology 1: 361371.
  • Keel SG, Campbell CD, Hogberg MN, Richter A, Wild B, Zhou X, Hurry V, Linder S, Nasholm T, Hogberg P. 2012. Allocation of carbon to fine root compounds and their residence times in a boreal forest depend on root size class and season. New Phytologist 194: 972981.
  • Klamer M, Roberts MS, Levine LH, Drake BG, Garland JL. 2002. Influence of elevated CO2 on the fungal community in a coastal scrub oak forest soil investigated with terminal-restriction fragment length polymorphism analysis. Applied and Environmental Microbiology 68: 43704376.
  • Körner C. 2006. Plant CO2 responses: an issue of definition, time and resource supply. New Phytologist 172: 393411.
  • Kummerow J, Kummerow M, Trabaud L. 1990. Root biomass, root distribution and the fine-root growth dynamics of Quercus coccifera L. in the garrigue of southern France. Vegetatio 87: 3744.
  • Langley JA, Dijkstra P, Drake BG, Hungate BA. 2003. Ectomycorrhizal colonization, biomass, and production in a regenerating scrub oak forest in response to elevated CO2. Ecosystems 6: 424430.
  • Langley JA, McKinley DC, Wolf AA, Hungate BA, Drake BG, Megonigal JP. 2009. Priming depletes soil carbon and releases nitrogen in a scrub-oak ecosystem exposed to elevated CO2. Soil Biology and Biochemistry 41: 5460.
  • Li J-H, Powell TL, Seiler TJ, Johnson DP, Anderson HP, Bracho R, Hungate BA, Hinkle CR, Drake BG. 2007. Impacts of hurricane Frances on a scrub-oak ecosystem under ambient and elevated CO2: defoliation, net CO2 exchange, and interactions with elevated CO2. Global Change Biology 13: 11011113.
  • Ludovici KH, Zarnoch SJ, Richter DD. 2002. Modeling in-situ pine root decomposition using data from a 60-year chronosequence. Canadian Journal of Forest Research 32: 16751684.
  • Luo Y, Hui D, Zhang D. 2006. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis. Ecology 87: 5363.
  • Luo Y, Su B, Currie WS, Dukes JS, Finzi AC, Hartwig U, Hungate BA, McMurtrie RE, Oren R, Parton WJ et al. 2004. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. BioScience 54: 731739.
  • Matamala R, Schlesinger WH. 2000. Effects of elevated atmospheric CO2 on fine root production and activity in an intact temperate forest ecosystem. Global Change Biology 6: 967979.
  • McClaugherty CA, Aber JD, Melillo JM. 1982. The role of fine roots in the organic matter and nitrogen budgets of two forested ecosystems. Ecology 63: 14811490.
  • Menges ES, Kohfeldt N. 1995. Life history strategies of Florida scrub plants in relation to fire. Bulletin of the Torrey Botanical Club 122: 282297.
  • Miller AT, Allen HL, Maier CA. 2006. Quantifying the coarse-root biomass of intensively managed loblolly pine plantations. Canadian Journal of Forest Research 36: 1222.
  • Norby RJ. 1994. Issues and perspectives for investigating root responses to elevated atmospheric carbon dioxide. Plant and Soil 165: 920.
  • Norby RJ, Ledford J, Reilly CD, Miller NE, O'Neill EG. 2004. Fine-root production dominates response of a deciduous forest to atmospheric CO2 enrichment. Proceedings of the National Academy of Sciences, USA 101: 96899693.
  • Ojima DS, Schimel DS, Parton WJ, Ownesby CE. 1994. Long-term and short-term effects of fire on nitrogen cycling in tallgrass prairie. Biogeochemistry 24: 6784.
  • Oren R, Ellsworth DS, Johnsen KH, Phillips N, Ewers BE, Maier C, Schafer KVR, McCarthy HR, Hendrey GR, McNulty SG et al. 2001. Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 411: 469472.
  • Poorter H, Nagel O. 2000. The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. Australian Journal of Plant Physiology 27: 595607.
  • Pregitzer KS, Burton AJ, King JS, Zak DR. 2008. Soil respiration, root biomass, and root turnover following long-term exposure of northern forests to elevated atmospheric CO2 and tropospheric O3. New Phytologist 180: 153161.
  • Pregitzer KS, DeForest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL. 2002. Fine root architecture of nine North American trees. Ecological Monographs 72: 293309.
  • Pritchard SG, Rogers HH, Prior SA, Peterson CM. 1999. Elevated CO2 and plant structure: a review. Global Change Biology 5: 807837.
  • Pritchard SG, Strand AE, McCormack ML, Davis MA, Finzi AC, Jackson RB, Matamala R, Rogers HH, Oren R. 2008. Fine root dynamics in a loblolly pine forest are influenced by free-air-CO2-enrichment: a six-year-minirhizotron study. Global Change Biology 14: 588602.
  • Reich PB, Hobbie SE, Lee T, Ellsworth DS, West JB, Tilman D, Knops JMH, Naeem S, Trost J. 2006. Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 440: 922925.
  • Retzlaff WA, Handset JA, O'Malley DM, McKeand SE, Topa MA. 2001. Whole-tree biomass and carbon allocation of juvenile trees of loblolly pine (Pinus taeda): influence of genetics and fertilization. Canadian Journal of Forest Research 31: 960970.
  • Richter DD, Markewitz D, Trumbore SE, Wells CG. 1999. Rapid accumulation and turnover of soil carbon in a reestablishing forest. Nature 400: 5658.
  • Robinson D. 2007. Implications of a large global root biomass for carbon sink estimates and for soil carbon dynamics. Proceedings of the Royal Society 274: 27532759.
  • Robinson D, Hodge A, Fitter A. 2003. Constraints on the form and function of root systems. In: de Kroon H, Visser EJW, eds. Root ecology. New York, NY, USA: Springer, 132.
  • Rogers HH, Runion GB, Krupa SV. 1994. Plant responses to atmospheric CO2 enrichment with emphasis on roots and the rhizosphere. Environmental Pollution 83: 155189.
  • Runion GB, Davis MA, Pritchard SG, Prior SA, Mitchell RJ, Torbert HA, Rogers HH, Dute RR. 2006. Effects of elevated atmospheric carbon dioxide on biomass and carbon accumulation in a model regenerating longleaf pine community. Journal of Environmental Quality 35: 14781486.
  • Schmalzer PA, Hinkle CR. 1992a. Recovery of oak-saw palmetto scrub after fire. Castanea 57: 158173.
  • Schmalzer PA, Hinkle CR. 1992b. Species composition and structure of oak-saw palmetto scrub vegetation. Castanea 57: 220251.
  • Seiler TJ, Rasse DP, Li J, Dijkstra P, Anderson HP, Johnson DP, Powell TL, Hungate BA, Hinkle CR, Drake BG. 2009. Disturbance, rainfall and contrasting species responses mediated aboveground biomass response to 11 years of CO2 enrichment in a Florida scrub-oak ecosystem. Global Change Biology 15: 356367.
  • Sonderegger DL, Ogle K, Evans RD, Ferguson S, Nowak RS. 2013. Temporal dynamics of fine roots under long-term exposure to elevated CO2 in the Mojave Desert. New Phytologist 198: 127138.
  • Stover DB, Day FP, Butnor JR, Drake BG. 2007. Effect of elevated CO2 on coarse-root biomass in Florida scrub detected by ground-penetrating radar. Ecology 88: 13281334.
  • Stover DB, Day FP, Drake BG, Hinkle CR. 2010. The effects of elevated atmospheric CO2 on fine root productivity, mortality, and survivorship in a scrub-oak ecosystem at Kennedy Space Center, Florida. Environmental and Experimental Botany 69: 214222.
  • Strand AE, Pritchard SG, McCormack ML, Davis MA, Oren R. 2008. Irreconcilable differences: fine-root life spans and soil carbon persistence. Science 319: 456458.
  • Stulen I, den Hertog J. 1993. Root growth and functioning under atmospheric CO2 enrichment. Vegetatio 104/105: 99115.
  • Taylor HM, Huck MG, Klepper B, Lund ZF. 1970. Measurement of soil-grown roots in a rhizotron. Agronomy Journal 62: 807809.
  • Tomlinson KW, Sterck FJ, Bongers F, da Silva DA, Barbosa ERM, Ward D, Bakker FT, van Kaauwen M, Prins HHT, de Bie S et al. 2012. Biomass portioning and root morphology of savanna trees across a water gradient. Journal of Ecology 100: 11131121.
  • Treseder KK. 2004. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytologist 164: 347355.
  • Turner CL, Blair JM, Schartz RJ, Neel JC. 1997. Soil N and plant responses to fire, topography, and supplemental N in tallgrass prairie. Ecology 78: 18321843.
  • Wang X, Taub DR. 2010. Interactive effects of elevated carbon dioxide and environmental stresses on root biomass fraction in plants: a meta-analytical synthesis using pairwise techniques. Oecologia 163: 111.
  • Watson RT, Nobel IR, Bolin B, Ravindranath NH, Verardo DJ, Dokken DJ. 2000. Land use, land-use change and forestry. Special Report of the IPCC. Cambridge, UK: Cambridge University Press.