SEARCH

SEARCH BY CITATION

References

  • Dvorak J, Luo MC, Yang ZL, Zhang HB. 1998. The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theoretical and Applied Genetics 97: 657670.
  • Giles RJ, Brown TA. 2006. GluDy allele variations in Aegilops tauschii and Triticum aestivum: implications for the origins of hexaploid wheats. Theoretical and Applied Genetics 112: 15631572.
  • Gill BS, Friebe B, Raupp WJ, Wilson DL, Cox TS, Sears RG, Brown-Guedira GL, Fritz AK. 2006. Wheat Genetics Resource Center: the first 25 years. Advances in Agronomy 85: 73135.
  • Gill BS, Huang L, Kuraparthy V, Raupp WJ, Wilson DL, Friebe B. 2008. Alien genetic resources for wheat leaf rust resistance, cytogenetic transfer, and molecular analysis. Australian Journal of Agricultural Research 59: 197208.
  • Gill BS, Raupp WJ. 1987. Direct genetic transfers form Aegilops squarrosa L. to hexaploid wheat. Crop Science 27: 445450.
  • Huang L, Brooks S, Li W, Fellers J, Nelson J, Gill BS. 2009. Evolution of new disease specificity at a simple resistance locus in a weed–crop complex: reconstitution of the Lr21 gene in wheat. Genetics 182: 595602.
  • Kam-Morgan LNW, Gill BS, Muthukrishnan S. 1989. DNA restriction fragment length polymorphisms: a strategy for genetic mapping of of D genome of wheat. Genome 32: 724732.
  • Kihara H. 1944. Discovery of the DD-analyser, one of the ancestors of Triticum vulgare. Agriculture and Horticulture (Tokyo, in Japanese) 19: 1314.
  • Kihara H, Tanaka M. 1958. Morphological and physiological variation among Aegilops squarossa strains collected in Pakistan, Afghanistan and Iran. Preslia 30: 241251.
  • Kihara H, Yamashita H, Tanaka M. 1965. Morphological, physiological, genetical, and cytological studies in Aegilops and Triticum collected in Pakistan, Afghanistan, Iran. Results of the Kyoto University scientific expedition to the Korakoram and Hidukush in 1955. Volume 1. Kyoto, Japan: Kyoto University.
  • Lubbers EL, Gill KS, Cox TS, Gill BS. 1991. Variation of molecular markers among geographically diverse accessions of Triticum tauschii. Genome 34: 354361.
  • Luo MC, Deal KR, Akhunov ED, Akhunova AR, Anderson OD, Anderson JA, Blake N, Clegg MT, Coleman-Derr D, Conley EJ et al. 2009. Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae. Proceedings of the National Academy of Sciences, USA 106: 1578015785.
  • McFadden ES, Sears ER. 1946. The origin of Triticum spelta and its free-threshing hexaploid relatives. Journal of Heredity 37: 81–89, 107116.
  • Qi LL, Echalier B, Chao S, Lazo GR, Butler GE, Anderson OD, Akhunov ED, Dvorak J, Linkiewicz AM, Ratnasiri A et al. 2004. A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics 168: 701712.
  • See DR, Brooks SA, Nelson JC, Brown-Guedira GL, Friebe B, Gill BS. 2006. Gene evolution at the ends of wheat chromosomes. Proceedings of the National Academy of Sciences, USA 103: 41624167.
  • Wang J, Luo M-C, Chen Z, You FM, Wei Y, Zheng Y, Dvorak J. 2013. Aegilops tauschii single nucleotide polymorphisms shed light on the origins of wheat D-genome genetic diversity and pinpoint the geographic origin of hexaploid wheat. New Phytologist 198: 925937.