SEARCH

SEARCH BY CITATION

References

  • Alaoui-Sossé B, Genet P, Vinit-Dunand F, Toussaint M-L, Epron D, Badot P-M. 2004. Effect of copper on growth in cucumber plants (Cucumis sativus) and its relationships with carbohydrate accumulation and changes in ion contents. Plant Science 166: 12131218.
  • Asael D, Matthews A, Bar-Matthews M, Halicz L. 2007. Copper isotope fractionation in sedimentary copper mineralization (Tinma Valley, Israel). Chemical Geology 243: 238254.
  • Balistrieri LS, Borrok DM, Wanty RB, Ridley WI. 2008. Fractionation of Cu and Zn isotopes during adsorption onto amorphous Fe(III) oxyhydroxide: experimental mixing of acid rock drainage and ambient river water. Geochimica et Cosmochimica Acta 72: 311328.
  • Bernal M, Casero D, Singh V, Wilson GT, Grande A, Yang H, Dodani SC, Pellegrini M, Huijser P, Connolly EL et al. 2012. Transcriptome sequencing identifies SPL7-regulated copper acquisition genes FRO4/FRO5 and the copper dependence of iron homeostasis in Arabidopsis. Plant Cell 24: 738761.
  • Bigalke M, Weyer S, Wilcke W. 2010a. Stable copper isotopes: a novel tool to trace copper behavior in hydromorphic soils. Soil Science Society of America Journal 74: 6073.
  • Bigalke M, Weyer S, Wilcke W. 2010b. Copper isotope fractionation during complexation with insolubilized humic acid. Environmental Science & Technology 44: 54965502.
  • Broadley M, Brown P, Cakmak I, Rengel Z, Zhao F. 2012. Function of nutrients: micronutrients. In: Marschner P, ed. Mineral nutrition of higher plants. Waltham, MA, USA: Academic Press, 210211.
  • Brown KR, Keller GL, Pickering IJ, Harris HH, George GN, Winge DR. 2002. Structures of the cuprous-thiolate clusters of the Mac1 and Ace1 transcriptional activators. Biochemistry 41: 64696476.
  • Burkhead JL, Reynolds KAG, Abdel-Ghany SE, Cohu CM, Pilon M. 2009. Copper homeostasis. New Phytologist 182: 799816.
  • Chen C-C, Chen Y-Y, Tang IC, Liang H-M, Lai C-C, Chiou J-M, Yeh K-C. 2011. Arabidopsis SUMO E3 ligase SIZ1 is involved in excess copper tolerance. Plant Physiology 156: 22252234.
  • Cobbett C, Goldsbrough P. 2002. Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annual Review of Plant Biology 53: 159182.
  • Collins RN, Merrington G, McLaughlin MJ, Knudsen C. 2002. Uptake of intact zinc-ethylenediaminetetraacetic acid from soil is dependent on plant species and complex concentration. Environmental Toxicology and Chemistry 21: 19401945.
  • Criss RE. 1999. Principles of stable isotope distribution. New York, NY, USA: Oxford University Press.
  • Curie C, Cassin G, Couch D, Divol F, Higuchi K, Le Jean M, Misson J, Schikora A, Czernic P, Mari S. 2009. Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Annals of Botany 103: 111.
  • Ehrlich S, Butler I, Halicz L, Rickard D, Oldroyd A, Matthews A. 2004. Experimental study of the copper isotope fractionation between aqueous Cu(II) and covellite, CuS. Chemical Geology 209: 259269.
  • Fernandes J, Henriques F. 1991. Biochemical, physiological, and structural effects of excess copper in plants. The Botanical Review 57: 246273.
  • Flemming CA, Trevors JT. 1989. Copper toxicity and chemistry in the environment – a review. Water Air and Soil Pollution 44: 143158.
  • Georgatsou E, Mavrogiannis LA, Fragiadakis GS, Alexandraki D. 1997. The yeast Fre1p/Fre2p cupric reductases facilitate copper uptake and are regulated by the copper-modulated Mac1p activator. Journal of Biological Chemistry 272: 1378613792.
  • Guelke M, Von Blanckenburg F. 2007. Fractionation of stable iron isotopes in higher plants. Environmental Science & Technology 41: 18961901.
  • Guelke-Stelling M, von Blanckenburg F. 2012. Fe isotope fractionation caused by translocation of iron during growth of bean and oat as models of strategy I and II plants. Plant and Soil 352: 217231.
  • Guerinot ML, Yi Y. 1994. Iron – nutritious, noxious, and not readily available. Plant Physiology 104: 815820.
  • Huett DO, Maier NA, Sparrow LA, Piggott TJ. 1997. Vegetable crops. In: Reuter DJ, Robinson JB, eds. Plant analysis: an interpretation manual. Collingwood, Vic., Australia: CSIRO Publishing, 449456.
  • Iwasaki K, Takahashi E. 1989. Effects of charge characteristics of Cu-chelates on the Cu uptake from the solution by Italian ryegrass and red clover. Soil Science and Plant Nutrition 35: 145150.
  • Jouvin D, Weiss DJ, Mason TFM, Bravin MN, Louvat P, Zhao F, Ferec F, Hinsinger P, Benedetti MF. 2012. Stable isotopes of Cu and Zn in higher plants: evidence for Cu reduction at the root surface and two conceptual models for isotopic fractionation processes. Environmental Science & Technology 46: 26522660.
  • Kau LS, Spirasolomon DJ, Pennerhahn JE, Hodgson KO, Solomon EI. 1987. X-Ray absorption edge determination of the oxidation state and coordination number of copper – application to the type-3 site in Rhus vernicifera laccase and its reaction with oxygen. Journal of the American Chemical Society 109: 64336442.
  • Kavner A, John SG, Sass S, Boyle EA. 2008. Redox-driven stable isotope fractionation in transition metals: application to Zn electroplating. Geochimica et Cosmochimica Acta 72: 17311741.
  • Kiczka M, Wiederhold JG, Kraemer SM, Bourdon B, Kretzschmar R. 2010. Iron isotope fractionation during Fe uptake and translocation in alpine plants. Environmental Science & Technology 44: 61446150.
  • Kopittke PM, Menzies NW, de Jonge MD, McKenna BA, Donner E, Webb RI, Paterson DJ, Howard DL, Ryan CG, Glover CJ et al. 2011. In-situ distribution and speciation of toxic copper, nickel, and zinc in hydrated roots of cowpea. Plant Physiology 156: 663673.
  • Kuepper H, Goetz B, Mijovilovich A, Kuepper FC, Meyer-Klaucke W. 2009. Complexation and toxicity of copper in higher plants. I. Characterization of copper accumulation, speciation, and toxicity in Crassula helmsii as a new copper accumulator. Plant Physiology 151: 702714.
  • Laurie SH, Tancock NP, McGrath SP, Sanders JR. 1991. Influence of complexation on the uptake by plants of iron, manganese, copper and zinc. II. Effect of DTPA in a multi-metal and computer simulation study. Journal of Experimental Botany 41: 515519.
  • Lee M, del Rosario MC, Harris HH, Blankenship RE, Guss JM, Freeman HC. 2009. The crystal structure of auracyanin A at 1.85 Å resolution: the structures and functions of auracyanins A and B, two almost identical “blue” copper proteins, in the photosynthetic bacterium Chloroflexus aurantiacus. Journal of Biological Inorganic Chemistry 14: 329345.
  • Liao MT, Hedley MJ, Woolley DJ, Brooks RR, Nichols MA. 2000. Copper uptake and translocation in chicory (Cichorium intybus L. cv Grasslands Puna) and tomato (Lycopersicon esculentum Mill. cv Rondy) plants grown in NFT system. II. The role of nicotianamine and histidine in xylem sap copper transport. Plant and Soil 223: 243252.
  • Marechal CN, Telouk P, Albarede F. 1999. Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry. Chemical Geology 156: 251273.
  • Marschner H, Romheld V. 1994. Strategies of plants for acquisition of iron. Plant and Soil 165: 261274.
  • Martins LL, Mourato MP. 2006. Effect of excess copper on tomato plants: growth parameters, enzyme activities, chlorophyll, and mineral content. Journal of Plant Nutrition 29: 21792198.
  • Mathur R, Ruiz J, Titley S, Liermann L, Buss H, Brantley S. 2005. Cu isotopic fractionation in the supergene environment with and without bacteria. Geochimica et Cosmochimica Acta 69: 52335246.
  • Michaud AM, Chappellaz C, Hinsinger P. 2008. Copper phytotoxicity affects root elongation and iron nutrition in durum wheat (Triticum turgidum durum L.). Plant and Soil 310: 151165.
  • Mijovilovich A, Leitenmaier B, Meyer-Klaucke W, Kroneck PMH, Gotz B, Kupper H. 2009. Complexation and toxicity of copper in higher plants. II. Different mechanisms for copper versus cadmium detoxification in the copper-sensitive cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges Ecotype). Plant Physiology 151: 715731.
  • Mills HA, Jones JB. 1996. Plant analysis handbook II. Athens, GA, USA: Micromacro Publishing.
  • Navarrete JU, Borrok DM, Viveros M, Ellzey JT. 2011. Copper isotope fractionation during surface adsorption and intracellular incorporation by bacteria. Geochimica et Cosmochimica Acta 75: 784799.
  • Palmer CM, Guerinot ML. 2009. Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nature Chemical Biology 5: 333340.
  • Parker D, Norvell WA. 1999. Advances in solution culture methods for plant mineral nutrition research. Advances in agronomy 65: 151213.
  • Pich A, Scholz G. 1996. Translocation of copper and other micronutrients in tomato plants (Lycopersicon esculentum Mill): nicotianamine-stimulated copper transport in the xylem. Journal of Experimental Botany 47: 4147.
  • Polette LA, Gardea-Torresdey JL, Chianelli RR, George GN, Pickering IJ, Arenas J. 2000. XAS and microscopy studies of the uptake and bio-transformation of copper in Larrea tridentata (creosote bush). Microchemical Journal 65: 227236.
  • Reichman SM, Menzies NW, Asher CJ, Mulligan DR. 2006. Responses of four Australian tree species to toxic concentrations of copper in solution culture. Journal of Plant Nutrition 29: 11271141.
  • Reuter DJ, Edwards DG, Wilhelm NS. 1997. Temperate and tropical crops. In: Reuter DJ, Robinson JB, eds. Plant analysis: an interpretation manual. Collingwood, Vic., Australia: CSIRO Publishing, 170174.
  • Robinson NJ, Procter CM, Connolly EL, Guerinot ML. 1999. A ferric-chelate reductase for iron uptake from soils. Nature 397: 694697.
  • Sancenon V, Puig S, Mira H, Thiele DJ, Penarrubia L. 2003. Identification of a copper transporter family in Arabidopsis thaliana. Plant Molecular Biology 51: 577587.
  • Schaaf G, Ludewig U, Erenoglu BE, Mori S, Kitahara T, von Wiren N. 2004. ZmYS1 functions as a proton-coupled symporter for phytosiderophore- and nicotianamine-chelated metals. Journal of Biological Chemistry 279: 90919096.
  • Schmidt W, Bartels M, Tittel J, Fuhner C. 1997. Physiological effects of copper on iron acquisition processes in Plantago. New Phytologist 135: 659666.
  • Weinstein C, Moynier F, Wang K, Paniello R, Foriel J, Catalano J, Pichat S. 2011. Isotopic fractionation of Cu in plants. Chemical Geology 286: 266271.
  • Weiss DJ, Mason TFD, Zhao FJ, Kirk GJD, Coles BJ, Horstwood MSA. 2005. Isotopic discrimination of zinc in higher plants. New Phytologist 165: 703710.
  • Welch RM, Norvell WA, Schaefer SC, Shaff JE, Kochian LV. 1993. Induction of iron(III) and copper(II) reduction in pea (Pisum-sativum L) roots by Fe and Cu status – does the root-cell plasmalemma Fe(III)-chelate reductase perform a general role in regulating cation uptake. Planta 190: 555561.
  • Wintz H, Fox T, Wu YY, Feng V, Chen WQ, Chang HS, Zhu T, Vulpe C. 2003. Expression profiles of Arabidopsis thaliana in mineral deficiencies reveal novel transporters involved in metal homeostasis. Journal of Biological Chemistry 278: 4764447653.
  • Yruela I. 2009. Copper in plants: acquisition, transport and interactions. Functional Plant Biology 36: 409430.
  • Zhu XK, Guo Y, Williams RJP, O'Nions RK, Matthews A, Belshaw NS, Canters GW, de Waal EC, Weser U, Burgess BK et al. 2002. Mass fractionation processes of transition metal isotopes. Earth and Planetary Science Letters 200: 4762.