SEARCH

SEARCH BY CITATION

References

  • Akiyama K, Matsuzaki K, Hayashi H. 2005. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435: 824827.
  • Aloui A, Recorbet G, Gollotte A, Robert F, Valot B, Gianinazzi-Pearson V, Aschi-Smiti S, Dumas-Gaudot E. 2009. On the mechanisms of cadmium stress alleviation in Medicago truncatula by arbuscular mycorrhizal symbiosis: a root proteomic study. Proteomics 9: 420433.
  • Aloui A, Recorbet G, Robert F, Schoefs B, Bertrand M, Henry C, Gianinazzi-Pearson V, Dumas-Gaudot E, Aschi-Smiti S. 2011. Arbuscular mycorrhizal symbiosis elicits shoot proteome changes that are modified during cadmium stress alleviation in Medicago truncatula. BMC Plant Biology 11: 75.
  • Amiour N, Recorbet G, Robert F, Gianinazzi S, Dumas-Gaudot E. 2006. Mutations in DMI3 and SUNN modify the appressorium-responsive root proteome in arbuscular mycorrhiza. Molecular Plant-Microbe Interactions 19: 988997.
  • Baier MC, Barsch A, Kuster H, Hohnjec N. 2007. Antisense repression of the Medicago truncatula nodule-enhanced sucrose synthase leads to a handicapped nitrogen fixation mirrored by specific alterations in the symbiotic transcriptome and metabolome. Plant Physiology 145: 16001618.
  • Baier MC, Keck M, Godde V, Niehaus K, Kuster H, Hohnjec N. 2010. Knockdown of the symbiotic sucrose synthase MtSucS1 affects arbuscule maturation and maintenance in mycorrhizal roots of Medicago truncatula. Plant Physiology 152: 10001014.
  • Balestrini R, Gómez-Ariza J, Lanfranco L, Bonfante P. 2007. Laser microdissection reveals that transcripts for five plant and one fungal phosphate transporter genes are comtemporaneously present in arbusculated cells. Molecular Plant-Microbe Interactions 20: 10551062.
  • Bestel-Corre G, Dumas-Gaudot E, Poinsot V, Dieu M, van Tuinen D, Remacle J, Gianinazzi-Pearson V, Gianinazzi S. 2002. Proteome analysis and identification of symbiosis-related proteins from Medicago truncatula Gaertn. by two-dimensional electrophoresis and mass spectrometry. Electrophoresis 23: 122137.
  • Bhadauria V, Banniza S, Wei Y, Peng YL. 2009. Reverse genetics for functional genomics of phytopathogenic fungi and oomycetes. Computational and Functional Genomics 2009: 380719.
  • Bonfante P, Genre A. 2008. Plants and arbuscular mycorrhizal fungi: an evolutionary-developmental perspective. Trends in Plant Science 13: 492498.
  • Bonfante P, Genre A. 2010. Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nature Communications 1: 48.
  • Bonfante P, Requena N. 2011. Dating in the dark: how roots respond to fungal signals to establish arbuscular mycorrhizal symbiosis. Current Opinion in Plant Biology 14: 451457.
  • Breuillin F, Schramm J, Hajirezaei M, Ahkami A, Favre P, Druege U, Hause B, Bucher M, Kretzschmar T, Bossolini E et al. 2010. Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. Plant Journal 64: 10021017.
  • Bucking H, Shachar-Hill Y. 2005. Phosphate uptake, transport and transfer by the arbuscular mycorrhizal fungus Glomus intraradices is stimulated by increased carbohydrate availability. New Phytologist 165: 899911.
  • Campos-Soriano L, Garcĭa-Martinez J, San Segundo B. 2012. The arbuscular mycorrhizal symbiosis promotes the systemic inducrion of regulatory defence-related genes in rice leaves and confers resistance to pathogen infection. Molecular Plant Pathology 13: 579592.
  • Chabaud M, Genre A, Sieberer BJ, Faccio A, Fournier J, Novero M. 2011. Arbuscular mycorrhizal hyphopodia and germinated spore exudates trigger Ca2+ spiking in the legume and nonlegume root epidermis. New Phytologist 189: 347355.
  • Chabaud M, Venard C, Defaux-Petras A, Bécard G, Barker DG. 2002. Targeted inoculation of Medicago truncatula in vitro root cultures reveals MtENOD11 expression during early stages of infection by arbuscular mycorrhizal fungi. New Phytologist 156: 265273.
  • Cook CE, Whichard LP, Turner B, Wall ME, Egley GH. 1966. Germination of Witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science 154: 11891190.
  • Czaja LF, Hogekamp C, Lamm P, Maillet F, Martinez EA, Samain E, Denarie J, Kuster H, Hohnjec N. 2012. Transcriptional responses toward diffusible signals from symbiotic microbes reveal MtNFP- and MtDMI3-dependent reprogramming of host gene Expression by arbuscular mycorrhizal fungal lipochitooligosaccharides. Plant Physiology 159: 16711685.
  • Ercolin F, Reinhardt D. 2011. Successful joint ventures of plants: arbuscular mycorrhiza and beyond. Trends in Plant Science 16: 356362.
  • Feddermann N, Muni RR, Zeier T, Stuurman J, Ercolin F, Schorderet M, Reinhardt D. 2010. The PAM1 gene of petunia, required for intracellular accommodation and morphogenesis of arbuscular mycorrhizal fungi, encodes a homologue of VAPYRIN. Plant Journal 64: 470481.
  • Fester T, Hause B, Schmidt D, Halfmann K, Schmidt J, Wray V, Hause G, Strack D. 2002. Occurrence and localization of apocarotenoids in arbuscular mycorrhizal plant roots. Plant and Cell Physiology 43: 256265.
  • Floss DS, Schliemann W, Schmidt J, Strack D, Walter MH. 2008. RNA interference-mediated repression of MtCCD1 in mycorrhizal roots of Medicago truncatula causes accumulation of C27 apocarotenoids, shedding light on the functional role of CCD1. Plant Physiology 148: 12671282.
  • Gaude N, Bortfeld S, Duensing N, Lohse M, Krajinski F. 2012. Arbuscule-containing and non-colonized cortical cells of mycorrhizal roots undergo extensive and specific reprogramming during arbuscular mycorrhizal development. Plant Journal 69: 510528.
  • Genre A, Chabaud M, Timmers T, Bonfante P, Barker DG. 2005. Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells before infection. Plant Cell 17: 34893499.
  • Genre A, Ortu G, Bertoldo C, Martino E, Bonfante P. 2009. Biotic and abiotic stimulation of root epidermal cells reveals common and specific responses to arbuscular mycorrhizal fungi. Plant Physiology 149: 14241434.
  • Gianinazzi S, Gollotte A, Binet MN, van Tuinen D, Redecker D, Wipf D. 2010. Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20: 519530.
  • Gianinazzi-Pearson V, Arnould C, Oufattole M, Arango M, Gianinazzi S. 2000. Differential activation of H+-ATPase genes by an arbuscular mycorrhizal fungus in root cells of transgenic tobacco. Planta 211: 609613.
  • Gobatto E, Marsh JF, Vernié T, Wang E, Maillet F, Kim J, Miller JB, Sun J, Bano A, Ratet P et al. 2012. A GRAS-type transcription factor with a specific function in mycorrhizal signaling. Current Biology 22: 22362241.
  • Gomez SK, Harrison MJ. 2009. Laser microdissection and its application to analyze gene expression in arbuscular mycorrhizal symbiosis. Pest Management Science 65: 504511.
  • Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pages V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC et al. 2008. Strigolactone inhibition of shoot branching. Nature 455: 189194.
  • Guether M, Neuhauser B, Balestrini R, Dynowski M, Ludewig U, Bonfante P. 2009. A mycorrhizal-specific ammonium transporter from Lotus japonicus acquires nitrogen released by arbuscular mycorrhizal fungi. Plant Physiology 150: 7383.
  • Guïmil S, Chang HS, Zhu T, Sesma A, Osbourn A, Roux C, Ioannidis V, Oakeley EJ, Docquier M, Descombes P et al. 2005. Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proceedings of the National Academy of Sciences, USA 102: 80668070.
  • Gutjahr C, Radovanovic D, Geoffroy J, Zhang Q, Siegler H, Chiapello M, Casieri L, An K, An G, Guiderdoni E et al. 2012. The half-size ABC transporters STR1 and STR2 are indispensable for mycorrhizal arbuscule formation in rice. Plant Journal 69: 906920.
  • Harrison MJ, Dewbre GR, Liu J. 2002. A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14: 24132429.
  • Hause B, Schaarschmidt S. 2009. The role of jasmonates in mutualistic symbioses between plants and soil-born microorganisms. Phytochemistry 70: 15891599.
  • Helber N, Wippel K, Sauer N, Schaarschmidt S, Hause B, Requena N. 2011. A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus Glomus sp is crucial for the symbiotic relationship with plants. Plant Cell 23: 38123823.
  • Heupel S, Roser B, Kuhn H, Lebrun MH, Villalba F, Requena N. 2010. Erl1, a novel era-like GTPase from Magnaporthe oryzae, is required for full root virulence and is conserved in the mutualistic symbiont Glomus intraradices. Moecular Plant-Microbe Interactions 23: 6781.
  • Hirochika H, Guiderdoni E, An G, Hsing YI, Eun MY, Han CD, Upadhyaya N, Ramachandran S, Zhang Q, Pereira A et al. 2004. Rice mutant resources for gene discovery. Plant Molecular Biology 54: 325334.
  • Hodge A, Campbell CD, Fitter AH. 2001. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413: 297299.
  • Hohnjec N, Vieweg MF, Puhler A, Becker A, Kuster H. 2005. Overlaps in the transcriptional profiles of Medicago truncatula roots inoculated with two different Glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza. Plant Physiology 137: 12831301.
  • Isayenkov S, Mrosk C, Stenzel I, Strack D, Hause B. 2005. Suppression of allene oxide cyclase in hairy roots of Medicago truncatula reduces jasmonate levels and the degree of mycorrhization with Glomus intraradices. Plant Physiology 139: 14011410.
  • Ivanov S, Fedorova EE, Limpens E, De Mita S, Genre A, Bonfante P, Bisseling T. 2012. Rhizobium–legume symbiosis shares an exocytotic pathway required for arbuscule formation. Proceedings of the National Academy of Sciences, USA 109: 83168321.
  • Javot H, Penmetsa RV, Breuillin F, Bhattarai KK, Noar RD, Gomez SK, Zhang Q, Cook DR, Harrison MJ. 2011. Medicago truncatula mtpt4 mutants reveal a role for nitrogen in the regulation of arbuscule degeneration in arbuscular mycorrhizal symbiosis. Plant Journal 68: 954965.
  • Javot H, Penmetsa RV, Terzaghi N, Cook DR, Harrison MJ. 2007. A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences, USA 104: 17201725.
  • de Jonge R, Bolton MD, Thomma BP. 2011. How filamentous pathogens co-opt plants: the ins and outs of fungal effectors. Current Opinion in Plant Biology 14: 400406.
  • Kiirika LM, Bergmann HF, Schikowsky C, Wimmer D, Korte J, Schmitz U, Niehaus K, Colditz F. 2012. Silencing of the Rac1 GTPase MtROP9 in Medicago truncatula stimulates early mycorrhizal and oomycete root colonizations but negatively affects rhizobial infection. Plant Physiology 159: 501516.
  • Kloppholz S, Kuhn H, Requena N. 2011. A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy. Current Biology 21: 12041209.
  • Kobae Y, Hata S. 2010. Dynamics of periarbuscular membranes visualized with a fluorescent phosphate transporter in arbuscular mycorrhizal roots of rice. Plant and Cell Physiology 51: 341353.
  • Kobae Y, Tamura Y, Takai S, Banba M, Hata S. 2010. Localized expression of arbuscular mycorrhiza-inducible ammonium transporters in soybean. Plant and Cell Physiology 51: 14111415.
  • Koltai H, LekKala SP, Bhattacharya C, Mayzlish-Gati E, Resnick N, Wininger S, Dor E, Yoneyama K, Hershenhorn J, Joel DM et al. 2010. A tomato strigolactone-impaired mutant displays aberrant shoot morphology and plant interactions. Journal of Experimental Botany 61: 17391749.
  • Krajinski F, Frenzel A. 2007. Towards the elucidation of AM-specific transcription in Medicago truncatula. Phytochemistry 68: 7581.
  • Kretzschmar T, Kohlen W, Sasse J, Borghi L, Schlegel M, Bachelier JB, Reinhardt D, Bours R, Bouwmeester HJ, Martinoia E. 2012. A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature 483: 341344.
  • Kuhn H, Kuster H, Requena N. 2010. Membrane steroid-binding protein 1 induced by a diffusible fungal signal is critical for mycorrhization in Medicago truncatula. New Phytologist 185: 716733.
  • Kuromori T, Takahashi S, Kondou Y, Shinozaki K, Matsui M. 2009. Phenome analysis in plant species using loss-of-function and gain-of-function mutants. Plant and Cell Physiology 50: 12151231.
  • Kwon C, Neu C, Pajonk S, Yun HS, Lipka U, Humphry M, Bau S, Straus M, Kwaaitaal M, Rampelt H et al. 2008. Co-option of a default secretory pathway for plant immune responses. Nature 451: 835840.
  • Liu J, Blaylock LA, Endre G, Cho J, Town CD, VandenBosch KA, Harrison MJ. 2003. Transcript profiling coupled with spatial expression analyses reveals genes involved in distinct developmental stages of an arbuscular mycorrhizal symbiosis. Plant Cell 15: 21062123.
  • Liu W, Kohlen W, Lillo A, Op den Camp R, Ivanov S, Hartog M, Limpens E, Jamil M, Smaczniak C, Kaufmann K et al. 2011. Strigolactone biosynthesis in Medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2. Plant Cell 23: 38533865.
  • Lohse S, Schliemann W, Ammer C, Kopka J, Strack D, Fester T. 2005. Organization and metabolism of plastids and mitochondria in arbuscular mycorrhizal roots of Medicago truncatula. Plant Physiology 139: 329340.
  • Maeda D, Ashida K, Iguchi K, Chechetka SA, Hijikata A, Okusako Y, Deguchi Y, Izui K, Hata S. 2006. Knockdown of an arbuscular mycorrhiza-inducible phosphate transporter gene of Lotus japonicus suppresses mutualistic symbiosis. Plant and Cell Physiology 47: 807817.
  • Maillet F, Poinsot V, Andre O, Puech-Pages V, Haouy A, Gueunier M, Cromer L, Giraudet D, Formey D, Niebel A et al. 2011. Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469: 5863.
  • Manthey K, Krajinski F, Hohnjec N, Firnhaber C, Puhler A, Perlick AM, Kuster H. 2004. Transcriptome profiling in root nodules and arbuscular mycorrhiza identifies a collection of novel genes induced during Medicago truncatula root endosymbioses. Molecular Plant-Microbe Interactions 17: 10631077.
  • Marsh JF, Schultze M. 2001. Analysis of arbuscular mycorrhizas using symbiosis-defective plant mutants. New Phytologist 150: 525532.
  • Martin F, Gianinazzi-Pearson V, Hijri M, Lammers P, Requena N, Sanders IR, Shachar-Hill Y, Shapiro H, Tuskan GA, Young JP. 2008. The long hard road to a completed Glomus intraradices genome. New Phytologist 180: 747750.
  • Nunes CC, Dean RA. 2012. Host-induced gene silencing: a tool for understanding fungal host interaction and for developing novel disease control strategies. Molecular Plant Pathology 13: 519529.
  • Op den Camp R, Streng A, De Mita S, Cao Q, Polone E, Liu W, Ammiraju JS, Kudrna D, Wing R, Untergasser A et al. 2011. LysM-type mycorrhizal receptor recruited for rhizobium symbiosis in nonlegume Parasponia. Science 331: 909912.
  • Parniske M. 2000. Intracellular accommodation of microbes by plants: a common developmental program for symbiosis and disease? Current Opinion in Plant Biology 3: 320328.
  • Parniske M. 2008. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature Reviews Microbiology 6: 763775.
  • Paszkowski U. 2006. A journey through signaling in arbuscular mycorrhizal symbioses. New Phytologist 172: 3546.
  • Perfect SE, Green JR. 2001. Infection structures of biotrophic and hemibiotrophic fungal plant pathogens. Molecular Plant Pathology 2: 101108.
  • Porceddu A, Panara F, Calderini O, Molinari L, Taviani P, Lanfaloni L, Scotti C, Carelli M, Scaramelli L, Bruschi G et al. 2008. An Italian functional genomic resource for Medicago truncatula. BMC Research Notes 1: 129.
  • Pumplin N, Harrison MJ. 2009. Live-cell imaging reveals periarbuscular membrane domains and organelle location in Medicago truncatula roots during arbuscular mycorrhizal symbiosis. Plant Physiology 151: 809819.
  • Pumplin N, Mondo SJ, Topp S, Starker CG, Gantt JS, Harrison MJ. 2010. Medicago truncatula Vapyrin is a novel protein required for arbuscular mycorrhizal symbiosis. Plant Journal 61: 482494.
  • Pumplin N, Zhang X, Noar RD, Harrison MJ. 2012. Polar localization of a symbiosis-specific phosphate transporter is mediated by a transient reorientation of secretion. Proceedings of the National Academy of Sciences, USA 109: E665E672.
  • Recorbet G, Rogniaux H, Gianinazzi-Pearson V, Dumas-Gaudot E. 2009. Fungal proteins in the extra-radical phase of arbuscular mycorrhiza: a shotgun proteomic picture. New Phytologist 181: 248260.
  • Reddy DMRS, Schorderet M, Feller U, Reinhardt D. 2007. A petunia mutant affected in intracellular accommodation and morphogenesis of arbuscular mycorrhizal fungi. Plant Journal 51: 739750.
  • Revalska M, Vassileva V, Goormachtig S, Van Hautegem T, Ratet P, Iantcheva A. 2011. Recent progress in development of Tnt1 functional genomics platform for Medicago truncatula and Lotus japonicus in Bulgaria. Current Genomics 12: 147152.
  • Schaarschmidt S, Gonzalez MC, Roitsch T, Strack D, Sonnewald U, Hause B. 2007. Regulation of arbuscular mycorrhization by carbon. The symbiotic interaction cannot be improved by increased carbon availability accomplished by root-specifically enhanced invertase activity. Plant Physiology 143: 18271840.
  • Schliemann W, Schmidt J, Nimtz M, Wray V, Fester T, Strack D. 2006. Accumulation of apocarotenoids in mycorrhizal roots of Ornithogalum umbellatum. Phytochemistry 67: 11961205.
  • Schmidt SM, Panstruga R. 2011. Pathogenomics of fungal plant parasites: what have we learnt about pathogenesis? Current Opinion in Plant Biology 14: 392399.
  • Siciliano V, Genre A, Balestrini R, Cappellazzo G, deWit PJ, Bonfante P. 2007a. Transcriptome analysis of arbuscular mycorrhizal roots during development of the prepenetration apparatus. Plant Physiology 144: 14551466.
  • Siciliano V, Genre A, Balestrini R, Dewit PJ, Bonfante P. 2007b. Pre-penetration apparatus formation during AM infection is associated with a specific transcriptome response in epidermal cells. Plant Signaling and Behavior 2: 533535.
  • Sieberer BJ, Chabaud M, Fournier J, Timmers AC, Barker DG. 2012. A switch in Ca2+ spiking signature is concomitant with endosymbiotic microbe entry into cortical root cells of Medicago truncatula. Plant Journal 69: 822830.
  • Singh S, Parniske M. 2012. Activation of calcium- and calmodulin-dependent protein kinase (CCaMK), the central regulator of plant root endosymbiosis. Current Opinion in Plant Biology 15: 444453.
  • Smith SE, Smith FA. 1990. Structure and function of the interfaces in biotrophic symbioses as they relate to nutrient transport. New Phytologist 114: 138.
  • Strack D, Fester T. 2006. Isoprenoid metabolism and plastid reorganization in arbuscular mycorrhizal roots. New Phytologist 172: 2234.
  • Takeda N, Sato S, Asamizu E, Tabata S, Parniske M. 2009. Apoplastic plant subtilases support arbuscular mycorrhiza development in Lotus japonicus. Plant Journal 58: 766777.
  • Tisserant E, Kohler A, Dozolme-Seddas P, Balestrini R, Benabdellah K, Colard A, Croll D, Da Silva C, Gomez SK, Koul R et al. 2012. The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont. New Phytologist 193: 755769.
  • Tollot M, Wong Sak Hoi J, van Tuinen D, Arnould C, Chatagnier O, Dumas B, Gianinazzi-Pearson V, Seddas PM. 2009. An STE12 gene identified in the mycorrhizal fungus Glomus intraradices restores infectivity of a hemibiotrophic plant pathogen. New Phytologist 181: 693707.
  • Valot B, Dieu M, Recorbet G, Raes M, Gianinazzi S, Dumas-Gaudot E. 2005. Identification of membrane-associated proteins regulated by the arbuscular mycorrhizal symbiosis. Plant Molecular Biology 59: 565580.
  • Valot B, Negroni L, Zivy M, Gianinazzi S, Dumas-Gaudot E. 2006. A mass spectrometric approach to identify arbuscular mycorrhiza-related proteins in root plasma membrane fractions. Proteomics 6(Suppl. 1): S145S155.
  • Vogel JT, Walter MH, Giavalisco P, Lytovchenko A, Kohlen W, Charnikhova T, Simkin AJ, Goulet C, Strack D, Bouwmeester HJ et al. 2010. SlCCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza-induced apocarotenoid formation in tomato. Plant Journal 61: 300311.
  • Walter MH, Floss DS, Hans J, Fester T, Strack D. 2007. Apocarotenoid biosynthesis in arbuscular mycorrhizal roots: contributions from methylerythritol phosphate pathway isogenes and tools for its manipulation. Phytochemistry 68: 130138.
  • Walter MH, Floss DS, Strack D. 2010. Apocarotenoids: hormones, mycorrhizal metabolites and aroma volatiles. Planta 232: 117.
  • Wang E, Schornack S, Marsh JF, Gobbato E, Schwessinger B, Eastmond P, Schultze M, Kamoun S, Oldroyd GE. 2012. A common signaling process that promote mycorrhizal and oomycete colonization of plants. Current Biology 22: 22422246.
  • van de Wouw AP, Howlett BJ. 2011. Fungal pathogenicity genes in the age of ‘omics’. Molecular Plant Pathology 12: 507514.
  • Xie X, Yoneyama K. 2010. The strigolactone story. Annual Reviews of Phytopathology 48: 93117.
  • Yoshida S, Kameoka H, Tempo M, Akiyama K, Umehara M, Yamaguchi S, Hayashi H, Kyozuka J, Shirasu K. 2012. The D3 F-box protein is a key component in host strigolactone responses essential for arbuscular mycorrhizal symbiosis. New Phytologist 196: 12081216.
  • Zamioudis C, Pieterse CM. 2012. Modulation of host immunity by beneficial microbes. Molecular Plant-Microbe Interactions 25: 139150.
  • Zhang Q, Blaylock LA, Harrison MJ. 2010. Two Medicago truncatula half-ABC transporters are essential for arbuscule development in arbuscular mycorrhizal symbiosis. Plant Cell 22: 14831497.